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Abstract: In this paperstrong limits on the accuracy of real-world physical computationare

established.To derive theseresultsanon-TuringMachine(TM) formulationof physicalcomputa-

tion is used.First it is proven that therecannotbea physical computerC to which onecanpose

any andall computationaltasksconcerningthephysicaluniverse.Next it is proventhatno physi-

cal computerC cancorrectlycarry out every computationaltaskin the subsetof suchtasksthat

couldpotentiallybeposedto C. Thismeansin particularthattherecannotbeaphysicalcomputer

that canbeassuredof correctly“processinginformationfasterthantheuniversedoes”.Because

this resultholdsindependentof how or if thecomputeris physicallycoupledto therestof theuni-

verse,it alsomeansthat therecannotexist an infallible, general-purposeobservation apparatus,

nor aninfallible, general-purposecontrolapparatus.Theseresultsdo not rely on systemsthatare

infinite, and/ornon-classical,and/orobey chaoticdynamics.They alsohold evenif onecoulduse

aninfinitely fast,infinitely densecomputer, with computationalpowersgreaterthanthatof aTur-

ing Machine(TM). After deriving theseresultsanaloguesof theTM Halting theoremarederived

for thenovel kind of computerconsideredin thispaper, asareresultsconcerningthe(im)possibil-

ity of certainkindsof error-correctingcodes.In addition,ananalogueof algorithmicinformation

complexity, “predictioncomplexity”, is elaborated.A task-independentboundis derivedon how

muchthepredictioncomplexity of acomputationaltaskcandiffer for two differentreferenceuni-

versalphysicalcomputersusedto solve thattask.This is analogousto the“encoding”boundgov-

erninghow muchthe algorithminformationcomplexity of a TM calculationcandiffer for two
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referenceuniversalTMs. It is proventhateithertheHamiltonianof our universeproscribesa cer-

tain typeof computation,or predictioncomplexity is unique(unlikealgorithmicinformationcom-

plexity). Finally, the implicationsof this analysisfor the issueof whetherthe universe“is” a

computer are briefly discussed.
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INTRODUCTION

Recentlytherehasbeenheightenedinterestin therelationshipbetweenphysicsandcomputa-

tion ([1-37]). This interestextendsfar beyond the topic of quantumcomputation.On the one

hand,physicshasbeenusedto investigatethe limits on computationimposedby operatingcom-

putersin therealphysicaluniverse.Conversely, therehasbeenspeculationconcerningthe limits

imposedon thephysicaluniverse(or at leastimposedon our modelsof thephysicaluniverse)by

the need for the universe to process information, as computers do.

To investigatethis secondissueonewould like to know whatfundamentaldistinctions,if any,

therearebetweenthephysicaluniverseanda physicalcomputer. To addressthis issuethis paper

begins by establishingthat the universecannotcontaina computerto which onecanposeany

arbitrarycomputationaltask.Accordingly, this papergoeson to considercomputer-indexedsub-

setsof computationaltasks,whereall themembersof any suchsubsetcan beposedto theassoci-

ated computer. Restricting attention to such subsets,it then proves that one cannot build a

computerthatcan“processinformationfasterthantheuniverse”.More precisely, it is shown that

onecannotbuild acomputerthatcan,for any physicalsystem,correctlypredictany aspectof that

system’s future state before that future state actually occurs.

This asymmetryin computationalspeedsconstitutesa fundamentaldistinctionbetweenthe

universeandthesetof all physicalcomputers.Its existencecastsaninterestinglight on theideas

of Fredkin,Landauerandothersconcerningwhethertheuniverse“is” a computer, whetherthere

are“information-processingrestrictions”on the laws of physics,etc.[11, 20]. In a certainsense,

theuniverseis morepowerful thanany information-processingsystemconstructedwithin it could

be.This resultcanalternatively beviewedasa restrictionon thecomputationalpower of theuni-

verse— theuniversecannotsupporttheexistencewithin it acomputerthatcanprocessinforma-

tion as fast as it can.

To establishthis unpredictabilityresultthis paperconsidersa modelof physicalcomputation

thatis actuallygeneralenoughto addresstheperformanceof othercomputationaltasksaswell as
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predictionof the future. In particular, this modeldoesnot rely on temporalorderingsof events,

andthereforetheunpredictabilityresultsalsoestablishthatno computercaninfallibly predictthe

past (i.e.,performretrodiction).Soany memorysystemmustbefallible, i.e., thesecondlaw can-

not be usedto ensureperfectly faultlessmemoryof the past.(Accordingly, the psychological

arrow of time is not inviolate[31].1) Theunpredictabilityresultsarealsogeneralenoughto allow

arbitrarycouplingof the computerandthe externaluniverse.So for examplethey alsoestablish

that therecannotbeeitheran infallible generalpurposeobservationdevice nor an infallible gen-

eral purposecontrol device. (The resultconcerningobservation canbe viewed asan uncertainty

principle, one that does not involve quantum mechanics.)

No physically unrealizablesystems,chaotic dynamics, or non-classicaldynamics are

exploited in this paper, andthe resultshold even if onerestrictsattentionto predictingsystems

thatcontaina finite numberof degreesof freedom.Theresultsalsohold even if thecomputeris

infinitely denseand/orinfinitely fast,evenif thecomputerhasaninfinite amountof time to do the

calculation(eitherbeforeor after theeventbeingpredictedoccurs).Theresultsalsohold even if

thecomputer’s initial input explicitly containsthecorrectvalueof thevariableit is trying to pre-

dict / observe.Moregenerallythey hold regardlessof theprogramrunningon thecomputer. They

alsohold for bothanaloganddigital computation,andwhetheror not thecomputer’sprogramcan

beloadedinto its own input (i.e., regardlessof thecomputationaluniversalityof thecomputer).In

fact they hold regardlessof the (Chomsky hierarchy) power of one’s computer, so long as it is

physically realizable.If it turnsout to be physically possibleto have computerswith computa-

tional power greaterthanthatof a Turing machine,thenthe resultof this paperholdsfor sucha

computer. As a particularexample,the resultsalsohold even if the “computer” includesoneor

morehumanbeings.Soevenif Penrose’smusingonquantumgravity andintelligenceturnsout to

bevalid — even if humancomputationalpowersarenot subjectto the restrictionsthatapply to

any of themembersof theChomsky hierarchy — it is still truethathumanintelligenceis guaran-

teed to be wrong sometimes.

Resultsof suchgeneralityarederived by examiningthe underlyingissuesfrom the perspec-
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tive of thecomputationalcharacterof real-world physical systemsin general,ratherthanthatof

somesinglepreciselyspecified(andoftennon-physically realizable)computersystem.Theasso-

ciatedmathematicsdoesnot directly involve dynamicalsystemslike Turing machines.Ratherit

castscomputationin termsof partitionsof the spaceof possibleworldlinesof the universe.For

example,to specifywhatinputaparticularphysicalcomputerhasataparticulartime is to specify

a particularsubsetof all possibleworldlinesof the universe;differentinputsto the computation

correspondto different (non-overlapping)suchsubsets.Similar partitionsspecify outputsof a

physical computer. Resultsconcerningthe (im)possibility of certainkinds of physical computa-

tion are derived by consideringthe relationshipbetweenthesekinds of partitions.In its being

definedin termsof suchpartitions,“physicalcomputation”involvesastructurethatneednoteven

beinstantiatedin someparticularphysically localizedapparatus;theformal definitionof a physi-

cal computeris generalenoughto also includemoresubtlenon-localizeddynamicalprocesses

unfolding acrossthe entireuniverse.Computersin the conventional,space-timelocalizedsense

(e.g.,the box on your desk)aresimply specialexamples,with lots of extra restrictionsthat turn

out to be unnecessary in the underlying mathematics.

Section1 of this papergeneralizesfrom particularinstancesof real-world physicalcomputers

that “try to reliably andaheadof time predictthefuturestateof any system”to motivatea broad

formaldefinitionof physicalcomputationin termsof partitions.To maintainmaximumbreadthof

theanalysis,wedonotwantto restrictattentionto physicalcomputersthatare(or arenot)capable

of self-reference.As analternative,westartby restrictingattentionto universescontainingat least

two physicalcomputers.(Putanotherway, our initial resultshold for any singlecomputernot so

powerful asto precludethepossibleexistenceanywhereelsein theuniverseof anothercomputer

aspowerful asit is — which certainlydescribesany computerthathumanbeingscanever cre-

ate.)Section1 alsoestablishesthat thereexist predictionproblemsthat cannotevenbeposedto

oneof thosetwo physicalcomputers.Restrictionsonthesetof predictionproblemsareintroduced

accordingly.

Section2 proves that, even within sucha restrictedset of predictionproblems,one cannot

have a pair of computerseachof which can,reliably andaheadof time,predictthefuturestateof
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any system.It is alsoin Section2 that the impossibilityof aninfallible general-purposeretrodic-

tion apparatus,observation apparatus,or control apparatusis established.Theseresultsare all

derived throughwhat is essentiallya physical versionof a CretanLiar’s paradox;they can be

viewed asa physical analogueof Godel’s IncompletenessTheorem,involving two instancesof

the putative computer rather than self-referential computers.

The mathematicsandimpossibility resultsgoverningthe partitionsunderlyingcomputation

bearmany parallelswith thatgoverningconventionalcomputersciencemodels.Section3 expli-

catessomeof that mathematicalstructure,involving topicsrangingfrom error correctionto the

(lackof) transitivity of computationalpredictabilityacrossmultipledistinctcomputers.In particu-

lar, resultsarepresentedconcerningphysical computationanaloguesof themathematicsof Tur-

ing machines,e.g.,“universal”physicalcomputersandHalting theoremsfor physicalcomputers.

In addition,ananalogueof algorithmicinformationcomplexity, “predictioncomplexity”, is elab-

orated.A task-independentboundis derivedon how muchthepredictioncomplexity of a compu-

tationaltaskcandiffer for two differentreferenceuniversalphysicalcomputersusedto solve that

task.This boundis similar to the “encoding”boundgoverninghow muchthe algorithmicinfor-

mationcomplexity of a Turing machinecalculationcandiffer for two referenceuniversalTuring

machines.It is thenproven that oneof two casesmusthold. Oneis that the Hamiltonianof our

universeproscribesa certaintype of computation.The other possibility is that, unlike conven-

tional algorithmic informationcomplexity, its physical computationanalogueis unique,in that

there is one and only version of it that can be applicable throughout our universe.

Section4 presentsa brief overview of how, the unpredictabilityresultsnotwithstanding,this

paper’s formalismmightbeusedto gainfully view auniverseasa(single)computer. Theimplica-

tions of this paper’s resultsundersuchan identificationarebriefly discussed.This sectionthen

relatesthework presentedin this paperto previouswork in theliterature,andendswith a discus-

sion of future work.

Throughoutthispaper, B ≡ {0, 1}, ℜ is definedto bethesetof all realnumbers,‘^’ is thelog-

ical and operator, and ‘NOT’ is the logical not operatorappliedto B. To avoid proliferationof
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symbols,oftenset-delineatingcurly bracketswill beusedsurroundinga singlesymbol,in which

casethatsymbolis to takento beavariablewith theindicatedsetbeingthesetof all valuesof that

variable.Sofor example“{y}” refersto thesetof all valuesof thevariabley. In additiono(A) is

the (potentiallytransfinite)cardinalityof any setA, and2A is thepower setof A. u ∈ U arethe

possiblestatesof theuniverse,and
^
U is thespaceof allowed trajectoriesthroughU (i.e., world-

linesof theuniverse).So û ∈ ^
U is asingle-valuedmapfrom t ∈ ℜ to u ∈ U, with ut ≡ ût thestate

of theuniverseat time t. Notethatsincetheuniverseis microscopicallydeterministic,(beit clas-

sicalor quantum-mechanical,if weadoptthemany-worldsinterpretationfor thelattercase)ut for

any t uniquelyspecifies
^
u. Sometimestherewill be implicit constraintson

^
U. For example,we

will assumein discussingany particularcomputerthat the space
^
U is restrictedto worldlines û

that containthat computer. Fully formal definitionsandproofsarerelegatedto the appendix,so

thatthemaintext canconcentrateon thefundamentalconcepts.Extradiscussionandexamplesof

thoseconceptsthatwould be too distractingin themain text arealsopresentedin theappendix.

An earlier analysis addressing some of the issues considered in this paper can be found in [33].

I. A DEFINITION OF WHA T IT MEANS T O “PREDICT THE FUTURE”

i) Definition of a Physical Computer

For thepurposesof thispaper, aphysicalcomputerwill “predict thestateof asystemaheadof

time” if thecomputeris a generalemulatorof thephysicaldynamicsof sucha system,anemula-

tor that operatesfasterthan that dynamics.So given sometime T > 0, andgiven somedesired

informationconcerningthestateof somesystematT, ourgoalis to have thecomputeroutputthat

desiredinformationbefore time T. To thatendweallow thecomputerto be“initialized” at time0,

with different“input”, dependingon thevalueof T, whatinformationis desired,perhapsinforma-

tion about the current state of the state whose future is being predicted, etc.

To make this concrete,let α bea characteristicof thestateof thephysicaluniverseat time T.
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We indicatea specificationthatwe wish to know α asa question q ∈ Q. Soq sayswhatα is for

any stateof theuniverseat timeT, i.e.,q is asingle-valuedmappingfrom thestateof theuniverse

at T to ananswer α.

Since û fixesuT and(for a deterministicuniverse)vice-versa,we cangeneralizethis by dis-

pensingwith specificationof T. In otherwords,wecanrecastany q asany single-valuedmapping

from û toα. So q fixes a partition over the space
^
U, and any pair (α, q) delineates a region in

^
U.

In general,thespace{ α} of potentialanswersof theuniverse(i.e., thesetof partitionelement

labels)canchangedependingon q, thequestionconcerningtheuniverse(i.e., thepartition).This

meansthat we needto concernourselvesnot just with the relationbetweencomputers’answer

values,but alsowith therelationbetweentheassociatedspacesof possiblevalues(e.g.,thenum-

ber 1 is both an elementof the spaceB andof the space{1,4,5}, two casesthat mustbe distin-

guished.)We will write the space{ α} as A(q) when we needto indicate its dependenceon

q explicitly. As muchaspossible,the extra complexity associatedwith keepingtrack of A(q) is

relegated to the fully formal analysis in the appendix.

Without theaccompanying q, avalueof α, by itself, is meaningless.Sowemustknow whatq

we areansweringwhenwe readthe computer’s output.Accordingly, we want the outputof our

computerto giveaquestionq togetherwith anassociatedpredictionfor α. Soourcomputer’sout-

put providesa delineationof a subregion of û ∈ ^
U; thoseû suchthatq( û ) = α. It providesmore

structurethanjust that though,e.g.,two differentoutputscanhave thesameanswereventhough

they delineate different regions (due to having different questions).

Veryoftenthequestion— amappingfrom answersto associatedsetsof possiblestatesof the

realworld — is only storedin a humanuser’s memory. In this casethataspectof thehumanis

implicitly part of the computer. An exampleis wheresomeparticularpatternof bits in an elec-

tronic workstationneedsto be “interpreted”by a humanto serve asa predictionconcerningthe

physical universe.

Finally, choosesomerealnumberτ, where0 < τ < T. Ourgoalis thatfor any q ∈ Q thereis an

associatedinitial “input” stateof the computerat time 0 which ensuresthat at time τ our com-
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puter’soutputis acorrectpredictionfor α, i.e.,whichensuresthatfor the û of theuniverse,q( û )

= α.

Notethatdespitethenomenclature,a “question/ answer”pair is not a premiseandassociated

conclusion,in the senseof an if-then statement.Ratherit is just a conclusion.The associated

premise (i.e., the if clause) is encoded in the input.

Now considerin moredetailaconventionalcomputerthatconsistsof afixedphysicaldynam-

ical system.Togetherwith thatsystemwehaveapairof mappingsby whichsomeof thatsystem’s

observable degreesof freedomare interpretedas (perhapsbinary) “inputs”, and someas “out-

puts”.Theinput andoutputdegreesof freedomcanoverlap,andmayevenbeidentical.Sincethe

computerexistsin thephysicaluniverseits stateatany momentt is specifiedby ut. Thereforeboth

the interpretationof someof the computer’s degreesof freedomas“inputs” andsomeas“out-

puts” aresingle-valuedmappingsfrom u ∈ U to a spaceof inputsandof outputs,respectively.

With the input time 0 andoutput time τ implicit, we canrecastthe domainsof thosemappings

as
^
U rather than U.

All of this holdswhetherthe computationof outputsfrom inputsproceedsin a “digital” or

“analog” fashion.Theonly restrictionwill bethatweareinterestedin falsifiableratherthanprob-

abilistic predictions.This restrictionwill often be met even if the systembeingpredictedis sto-

chasticandthe preciseaspectof it we’re predictingis a function of the associateddistributions.

For example,whetherthetemperatureof a particularsystemfalls within a certainrangeat a par-

ticular time is a falsifiableprediction.(SeealsoEx. 1 below.) In any case,theextensionto having

thecomputer’soutputbeaprobabilitydistribution is fairly straight-forward— seethediscussion

just before Thm. 2.

Example 1 (conventional prediction of the future): Saythat our universecontainsa systemS

externalto ourcomputerthatis closedin thetime interval [0, T], andlet u bethevaluesof theele-

mentsof a setof canonicalvariablesdescribingtheuniverse.α is thet = T valuesof thecompo-

nentsof u thatconcernS, measuredon somefinite grid G( UT ). q is this definitionof α with G
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andthelike fully specified.(Soq is a partitionof thespaceof possibleuT, andα is anelementof

thatpartition.)Q is a setof suchq’s, differing in G, whoseassociatedanswersour computercan

(we hope)predictcorrectly. By determinism,undertheconventionthatwe areinterestedin ques-

tions concerningthe t = T stateof the universe,we can replaceany grid G( UT ) with a grid

G(
^
U ).

Theinput to thecomputeris implicitly reflectedin its t = 0 physicalstate,asour interpretationof

that state.In this example(thoughnot necessarilyin general),that input specifieswhatquestion

we want answered,i.e., which q andassociatedT we areinterestedin. It alsodelineatesoneof

several regionsR ⊆ ^
U, eachof which, intuitively, givesthe t = 0 stateof S andS’s Hamiltonian.

ThroughouteachsuchR, the systemS is closedfrom the restof the universeduring t ∈ [0, T].

SincethepreciseR delineatedspecifiesa setof possiblevaluesof u0 in full, not just of S’s t = 0

state,it is an elementof a (perhapsirregular) finite precisiongrid over
^
U, G'. If, for someR,

q( û ) hasthesamevaluefor all û ∈ R, thenthis inputR uniquelyspecifieswhatα is for any asso-

ciatedû. If this is not thecase,thentheR input to thecomputerdoesnot suffice to answerques-

tion q. Sofor any q andregion R bothof which canbespecifiedin thecomputer’s input,R must

be a subset of a region q-1(α) for someα.

Implicit in this definition is somemeansfor correctlygettingthe informationof thevalueR into

the computer’s input. In practice,this is often doneby having had the computercoupledto S

sometimebeforetime 0. As analternative, ratherthanspecifyR in the input, we couldhave the

input containa “pointer” telling thecomputerwhereto look to gettheinformationR. (Theanaly-

sis of this paper holds no matter how the computer gains access to R.)

In practicetheinput,giving R, q, andT, is anelementof apartitionoveran“input section”of our

computer. In sucha case,theinput is itself anelementof a finite precisiongrid overU0, G"( U0 ).

So an element of G" specifies an element of G (namely q) and element of G' (namely R).

As usualany G"( U0 ) canbe re-expressedasa grid G"(
^
U ), underthe conventionthat we are

interestedin inputsimposedonthet = 0 stateof thecomputer. Notethatif initializationwereto be

at a time t ≠ 0, it would correspondto a differentgrid G"(
^
U ), in general,sincethevaluesof the
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computer’s input degrees of freedom may vary in time.

Givenits input, thecomputer(triesto) form its predictionfor α by first runningthelaws of phys-

ics on au0 having thespecifiedvalueasmeasuredon G', accordingto thespecifiedHamiltonian,

up to thespecifiedtime T. Thecomputerthenappliesq(.) to theresult.Finally, it ensuresthatthis

predictionfor α is in its outputsectionat time τ. More precisely, thereis a fourth finite precision

grid G"' overUτ definedby thestateof thecomputer’soutputsectionat timeτ. Thecomputeruses

that grid to “write out” (what is interpretedas)its predictionfor which region in U the universe

will bein atT, thatpredictionbeingformally equivalentto apredictionof a region in
^
U. Thegoal

is to have it do this, with the correct value ofα, by timeτ < T.

SinceG"'( Uτ ) inducesagrid over
^
U, G"'(

^
U ), wecandispensewith the“time τ ≤ T” stipulation;

the goal is simply to have the universebe in the elementof G"'(
^
U ) associatedwith the correct

valueof α. As with changingthetimeof input,changingthetime τ of outputwill changethegrid

G"'(
^
U ), in general.

Consideragain thecasewherethereis in facta correctprediction,i.e.,whereR is indeeda subset

of theregion q-1(α) for someα. For this case,formally speaking,“all thecomputerhasto do” in

making its predictionis take the region R andquestionq delineatedin its input and recognize

which region in thepartitionq containstheregion R. Thenit mustoutputthelabelof thatregion

in q onto its output.In practicethough,q andR areusually“encoded”differently, andthecom-

putermust“translate”betweenthoseencodingsto recognizewhich region q-1(α) containsR; this

translation constitutes the “computation”.

Notethatall of thisholdsevenif S’sdynamicsis stochastic,and/orS’sstateis neverdeterministi-

cally fixed to greater precision that that of G'.

Generalizingtheseconsiderations,we definea computer’s input to bea mappingX(.) from û

∈ ^
U to a spaceof inputs,{x}. Intuitively, it is a partitionof

^
U (seetheappendix).Sofor example

“initialization” of a computerasconventionallyconceived,which setsthet = 0 stateof a physical

systemunderlyingthecomputer, is simply a specialcase.(In thatspecialcase,thevaluetakenby
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the input mappingdiffers for û and û' if the t = 0 stateof thecomputerinput portionof theuni-

verse,asspecifiedby û, differs from thet = 0 stateof thecomputerinput portionof theuniverse

asspecifiedby û'.) Similarly, we candefinea computer’s output to be a mappingY(.) from û

∈ ^
U to aspaceof outputs,{y}. In suchanoutputpartition,theset{y} consistof all pairs{y q ∈ Q,

yα ∈ A(yq)}, for someQ andassociatedA(.). We saythatyq is the “questionposedto thecom-

puter”, and yα is “the computer’s answer”.

A physical computer thenis simply thedoubleof aninput partitionandanassociatedoutput

partition. As consideredin this paper, all that computationamountsto is the delineationof the

logical implicationsfor which element(s)of theoutputpartitioncontain
^
u, giventhata particular

providedinput partitionelementcontains
^
u. We areinterestedin whethertheelementof theout-

put partition inducedby a particularinput correctlydescribesthe universe,asrestrictedby that

input. So in particular, we arenot consideringcounter-factual“computation”involving premises

that conflict with the actual state of the universe.

Thedefinitionof aphysicalcomputerpresentedhereis farbroaderthanconventionalcomput-

ers that work by processes like that outlined in Ex. 1, as the following discussion explicates:

Example 1 continued: The definition of a physical computerdoesnot require that an input

always implies a uniqueoutput,as in Ex. 1. In addition,the computerin Ex. 1 hasthe laws of

physicsexplicitly built into its “program”. But our definition allows arbitrary “programs”.Our

definitionalsoallows otherkindsof informationinput to thecomputerbesidesthatof Ex. 1. Fur-

thermore,we will only needto requirethat therebesome input to thecomputerthat,by accident

or by design,inducesthecorrectoutput.This meanswe do not even requirethat thecomputer’s

initial statex “accuratelydescribes”thet = 0 externaluniversein any meaningfulsense.(Ourgen-

eralizationof Ex. 1 preservesanaloguesof thegridsG (in Q(.)),G" (in X(.)) andG"' (in Y(.)), but

not of the grid G'.)

In fact,sincethepartitionX(.) canreflectany attributeof ^u, it neednoteveninvolve thet = 0 state

of thephysical computer. In otherwords,aswe usethe termshere,thecomputer’s “input” need
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explicitly delineatethe particularphysical systemwithin the universethat we identify with the

computer. (A physical computeris simply an input partition togetherwith an outputpartition.)

This meanswe caneven chooseto have the entireuniverse“be the computer”(seeSect.4). In

addition,our definitiondoesnot enforcehaving inputsbe “set” beforeoutputsare“read” in any

sense. It is only concerned with the entire worldlines of the universe.

As anotherexampleof the freedomto extendEx. 1, notethat in practicewe maywant to physi-

cally coupleour computerto theexternaluniverse,for examplevia anobservationapparatusthat

initializesthecomputer’s inputssothatthey reflectinformationaboutthesystembeingpredicted.

Suchacouplingwouldbereflectedin û. If wewish though,wecanexploit thefreedomin its def-

inition to modify the input mapping,in sucha way that it too directly reflectsthis kind of cou-

pling. For example, under the proposedmodification, if we want the input section of the

computer’sunderlyingphysicalsystemto beabit b1 thatequalsthet = -1 stateof somebit b2 con-

cerningtheexternaluniverse,thenwe couldhave X( û ) = X(b1(u0), b2(u-1)) = b1(u0) if b1(u0) =

b2(u-1), andhave it equala special“input error” valueotherwise.If we do have a physical cou-

pling mechanism,andif thatmechanismis reliable— somethingreflectedin û — thenthis third

settingwill never occur, andwe canignoreit. However useof this modifiedX allows usto avoid

explicitly identifying sucha mechanismandsimply presumeits existence.So long asthe third

settingnever occurs,we cananalyzethe systemas though it hadsucha (reliable)physical cou-

pling mechanism.

We canalsomodify Ex. 1 in otherwaysthatdo not involve input.For example,we canhave S be

open(or perhapsevenbetheentireuniverse).We canalsohave thecomputerobserve thesystem

beingpredictedafter initialization (sothatthatinitializationonly servesto specifywhatshouldbe

observed).This is oneof themajorreasonswhy we do not requirethatthevaluex uniquelyfixes

Yα( û ), to not precludethe possibility of yα beingbasedon observationsof the externalworld

thatoccurafterthesettingof thecomputer’s input. (Otherreasonsfor not having x fix yα arisein

the context of weak predictability; seethe discussionin the appendixprecedingEx. 2.) Other
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examplesof how to modify Ex. 1 arepresentedbelow in thediscussionof retrodictionandcon-

trol.

We will sometimesfind it usefulto considera copy of a particularcomputerC = (X, Y). This

is any computerC' = (X', Y') where{x'} = {x}, {Y'} = {Y}, andthe (set-valued)functionof all

outputsthatarepossiblegivena particularinput is thesamefor bothcomputers.In otherwords,

even thoughthe functionsX'(.) andY'(.) may differ from X(.) andY(.) respectively, the logical

implicationsrelatingvaluesof x' andY' arethe sameasthoserelatingvaluesx andY. So both

computershave thesameinput-outputmapping.As a particularexample,if a scientistat a partic-

ular time (i.e., a computer)C in somespace
^
U is transformedinto a copy C' in some

^
U', thereis

no way that(s)hecanascertainthat that transformationhasoccurred.Thetwo scientistsinterpret

their input asthesamequestionandin responseprovide thesameanswer(whetherthatansweris

generated via prediction and/or observation —  see the discussion below Thm. 2).

Example 1 continued:Consideragain thecomputerin Ex. 1. Recallthat if theinitialization time

0, questiontime T, and/oroutput time τ arechanged,thenin generalthe partitionsX and/orY

maychange.Soin particular, thetime-translatedversionof a computerC differs from C, in gen-

eral.However the“time-translatedversionof C” is acopy of C (or at leastit makessenseto define

thetermthatway, so long asthe laws of physicsaretime-translationinvariant).Similarly, a spa-

tially-translatedversionof C is only a copy of C in general,ratherthanidenticallyequalto C. So

formally speaking,thesequenceof computationsthebox on your deskmakesover a periodof a

month is a set of physical computers, all copies of one another, applied to the same
^
u.

ii) Intelligible computation and distinguishable computers

Considera conventional physical computer, consistingof an underlying physical system

whoset = 0 statesetsX( û ) andwhosestateat time τ setsY( û ), asin Ex. 1. Wewish to analyze

whether the physical system underlying that computer can calculate the future sufficiently
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quickly. In doingso,wedonotwantto allow any of the“computationalload” of thecalculationto

be“hidden” in themappingsX(.) andY(.) by whichwe interprettheunderlyingphysicalsystem’s

state,therebylesseningthecomputationalloadon thatunderlyingphysicalsystem.Stateddiffer-

ently, wewishboththeinputandtheoutputcorrespondingto any stateof theunderlyingphysical

systemto be “immediatelyandreadily intelligible”, ratherthanrequiringnon-trivial subsequent

computingbeforeit canbeinterpreted.As will beseenin our formalizationof this requirement,it

is equivalentto stipulatingthatour computerbeflexible enoughthat thereareno restrictionson

the possible questions one can pose to it.

Oneway to formalizethis intelligibility constraintwould entail imposingcapabilitiesfor self-

referenceonto our computer. This hasthe major disadvantageof restrictingthe setof physical

computersunderconsideration.As analternative, to formalizethenotionthatacomputer’s inputs

andoutputsbe“intelligible”, hereweconsideruniverseshaving anothercomputerwhichcancon-

siderthefirst one.Wethenrequirethatthatsecondcomputerbeableto directlyposebinaryques-

tions about whether the first computer’s prediction correctly correspondsto reality, without

relying on any intervening “translational” computerto interpret that first computer. (Note that

nothing is being said aboutwhethersucha questioncan be correctly answered by the second

computer, simply whetherit canbeposed to thatcomputer.) Sowe wish to beableto askif that

outputis oneparticularvalue,whetherit is anotherparticularvalue,whetherit is oneof a certain

set of values,etc. Intuitively, this meansthat the set Q for the secondcomputermust contain

binaryfunctionsof Y(.) of thefirst computer. Finally, wealsorequirethatthesecondcomputerbe

similarly intelligible to the first one.

Thesetwo requirementsarehow we imposethe intuitive requirementthatbothcomputersbe

“readily intelligible” as predictionsconcerningreality; they must be readily intelligible and

checkableto each other. More precisely, definean intelligibility function of any ^U-partitionπ to

bea binary-valuedfunctionof theelementsof thatpartition. (We call a setof suchfunctionsan

intelligibility set.) If thesetof questionswecanposeto acomputerC includesall suchfunctions,

we saythatπ is intelligible to C. For sucha case,C canhave posedany questionconcerningthe
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universeas measuredon π. This flexibility in C ensuresthat C’s output partition isn’t “rigged

aheadof time” in favor of someparticularquestionconcerningπ. Theobviousmodificationsare

assumed if we talk aboutπ being intelligible to C “with respect to some intelligibility set F”.2

A problemwith this definition of intelligibility is that onecanprove therecannotbe a com-

puterto which onecaneven poseall possiblequestionsconcerningthe physical world. (This is

establishedformally asThm.1 in theappendix.)Theproblemariseswhenwetry to poseintelligi-

bility functionsconcerningthecomputerC’soutputpartitionto C itself. Intuitively, it is notpossi-

ble for thesetof C’squestionpartitionsto includethe(larger)setof all binary-valuedfunctionsof

those partitions.

To circumvent this problem,from now on we implicitly restrict any intelligibility function

concerninganoutputpartitionY to be question-independent, i.e., to not dependon theprecise

questionencodedin y, only on the answercomponent.Intuitively, restrictingourselvesto these

kindsof intelligibility functionsmeanswe areonly requiringthat thepredictedpartition label of

onephysical computerbedirectly readableon theothercomputer’s input, not that the full parti-

tion of thefirst computer’s questionalsobedirectly readable.Giventherestrictionto suchques-

tion-independentintelligibility functions,we say that two physical computersC1 and C2 are

mutually intelligible if the output partition of C2 is intelligible to C1 and vice-versa.

Formally speaking,to make surethat the rangesof intelligibility functionsmatchup with

thoseof outputpartitionswhenworking with question-independentintelligibility functions,often

we shouldconsiderthe full predictionpartition,Yp( û ) ≡ (A(Yq( û ), Yα( û )), ratherthanjust

Yα( û ). For example,this is thecasein the formal definitionsof weakandstrongpredictability

(seetheappendix).For pedagogicalsimplicity though,we will oftenjust referto the“computer’s

answer” or the “computer’s prediction” rather than explicitly statewhetherwe meanYp. As

always, such formal concerns are dealt with in full in the appendix.

Finally, our unpredictabilityresultswill rely on our two physical computersbeing distinct

from oneanother. They mustnotbesointertwinedthathow wecaninitialize oneof themis deter-

minedby how we initialize theother. More formally, just aswe requirethatall input valuesx ∈
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{x} arephysically realizablestatesof a singlephysical computer, so all pairsof the two com-

puter’s inputsvaluesmustbe physically realizablestatesof the two physical computers.When

this is thecasewe saythat thecomputersarepairwise (input) distinguishable. Whenthis is the

casefor eachpair of a setof computers,we saythatthesetis pairwise-distinguishable,andwhen

it is possibleto haveany joint combinationof theinputvaluesof all membersof thesetwesaywe

have full distinguishability for that set.

iii) Predictable computation

We can now formalize the conceptof a physical computer’s “making a correctprediction”

concerninganothercomputer’s futurestate.We saythata ^U-partitionπ is weakly predictable to

C if two conditionshold. First, π mustbe intelligible to C. Second,for every intelligibility func-

tion concerningπ, f, ∃ x ∈ {x} thatweakly induces f, i.e.,a valuex suchthatX(
^
u ) = x forces

thepredictionto equalf( û ). Wewill sayacomputerC' with outputY'(.) is weaklypredictableto

anothercomputerC, andwrite C > C', if theanswerpartitionof C' is weaklypredictableto C. If

we just say “predictable” it will be assumed that we mean weak predictability.

Seethevariantsof Ex. 2 in theappendixfor illustrationsof weaklypredictablesetsof comput-

ers.Thesedemonstrate,amongotherthings,that the “>” relationneednot be transitive. In fact,

even if someC1 could predict C2’s input simultaneouslywith predictingC2’s answer, it still

wouldnot follow thatC1 canpredictsomeπ justbecauseC2 can.This is becauseC1 hasnoability

to setits input to ensurethatx2 is oneof thevaluesinvolvedin C2’spredictingπ. (Strongpredict-

ability, introduced below, rectifies this.)

This definition of predictableis very broad.It doesn’t requirethat therebe a sensein which

theinformationinput to C is interpretableasa descriptionof theexternaluniverse.(This freedom

is whatallows us to avoid formalizing theconceptof whethersomeinput doesor doesnot “cor-

rectly describe”theexternaluniverse.)Indeed,we don’t evenrequirethatYq( û ) = q. Evenif the

computergetsconfusedaboutwhatquestionit’s answering,we give it credit if it comesup with

thecorrectanswerto ourquestion.In addition,considersomeintelligibility functionf andassoci-
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atedx. Thenrecall that we do not even forbid the possibility of two û’s that areboth consistent

with that x and that both obey Yα( û ) = f( û ), but that nonethelesshave different Yα( û ).

(‘Accordingly, lack of predictability implies merely that for somef a correctanswercannotbe

guaranteed, rather than that a wrong answer is assured.

Furthermore,while motivatedby thetaskof predictingthefuture,thedefinitionof weakpre-

dictability presentedhereis moregeneral,concerningany computationthatcanbecastin termsof

inputs,questionsabouttheuniverse,andassociatedanswers.For example,no timeslike 0, τ or T

occurin thedefinitionof ‘predictable’or in any of thetermsgoinginto thatdefinition.Moreover,

evenwhenthereis sometemporalorderingthatrelatestheinputs,theoutputs,andtheprediction

involvedin thecomputation,we neednot have T > τ > 0 asin Ex. 1. We couldjust aseasilyhave

T < τ < 0 or evenT < 0 < τ. Sotheresultspresentedbelow will establishtheunpredictabilityof the

past aswell asof thefuture.They alsocanbeviewedasestablishingthefallibility of any observa-

tion apparatus and of any control apparatus.These points will be returned to below.

Finally, it is importantto realizethat the requirementof intelligibility canbe removed from

thedefinitionof predictability, andmany of theresultspresentedbelow will still hold (e.g.,Thm.

2 will still hold). That requirementcanbehelpful in extensionsof this paper’s analysishowever,

andcertainlyseems“natural”. Henceits inclusionin our definition.Seethediscussionleadingup

to Def. 4 in the appendix for more discussion of this point.

2. THE UNPREDICTABILITY OF THE FUTURE

i) The impossibility of assuredly correct prediction

Even if we can poseall the questionsin someset to a computer, that saysnothing about

whetherby appropriatechoiceof input thatcomputercanalwaysbeassuredof correctlyanswer-

ing any questionfrom thatset.In fact,evenif werestrictattentionto question-independentintelli-

gibility sets,no physical computercan be assuredlycorrect in its predictionsconcerningthe
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future.

Whereasthe impossibility expressedby Thm. 1 follows from cardinalityargumentsandthe

power setnatureof intelligibility sets,the impossibility of assuredlycorrectpredictionfollows

from thepresenceof thenegationoperatorin even(question-independent)intelligibility sets.As

anexampleof thelogic underlyingtheproof,considerapairof computerspredictingthefutureas

in Ex. 1. Have bothof thecomputershave answersubsectionsthatarebinary, andhave initializa-

tion time equal0 andquestiontime equalT. Have oneof the two computerspredict the other’s

time T outputbit andthenhalt andfreezeits output,all by sometime τ < T, whereasthat other

computerpredictsthe negation of the first one’s time T outputbit just beforeit too halts.Since

bothcomputers’outputcalculationsmusthalt by τ, they will contradicteachotherwhenthepre-

diction time T arrives. Therefore they cannot both be correct in their predictions.

This kind of reasoningcanbe extendedto apply to any pair of physical computers,not just

onesthatwork asin Ex. 1. For example,no “halting andfreezing”is requiredin general.(Indeed,

in practiceC cannotguaranteethat its outputwill be frozenwith a particularoutputvalue that

doesnotchangeuntil aftersometimeτ, sinceit is alwayspossiblethatanoutsidesystemcomesin

andperturbsC.) Eventhetimes0, τ, andT aresuperfluous.This is formally statedin thefollow-

ing theorem:

Theorem 2: Considerany pair of distinguishablephysicalcomputers{C i : i = 1, 2}. It is not pos-

sible that both C1 > C2 and C1 < C2.

It shouldbeemphasizedthatThm. 2 holdsno matterhow largeandpowerful our computers

are;it evenholdsif the “physical systemunderlying”oneor bothof our computersis thewhole

universe.It alsoholdsif insteadC2 is therestof thephysicaluniverseexternalto C1. As aparticu-

lar instanceof this latter case,the theoremholdseven if C1 andC2 arephysically isolatedfrom

eachother∀ t > 0. (Resultssimilar to Thm.2 thatrely on physicalcouplingbetweenthecomput-

ers are presented in [33].)
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Ratherthan viewing it as imposinglimits on computers,Thm. 2 can insteadbe viewed as

imposinglimits on thecomputationalcapabilitiesof theuniverseasa whole.Fromthis perspec-

tive thattheoremestablishesthattheuniversecannotsupportparallelcomputationin whichall the

nodesaresufficiently powerful to correctlypredicteachother’sbehavior. In addition,it is possible

to generalizethis paper’s formalismto stochasticuniversesand/orcomputers.In that extension

Thm. 2 takesthe form of sayingit is impossiblefor theprobabilityof correctpredictionfor two

computersto bothequal1. An openquestionis whatthehighestε is suchthattwo computerscan

simultaneouslyhave it astheir probabilityof correctprediction.(Seediscussionin theappendix

just before Lemma 1.)

ii) Implications of Thm. 2

Let C bea computersupposedlycapableof correctlypredictingthefutureof any systemS if

appropriateinformation concerningthe initial stateof S is provided to C, as in Ex. 1 above.

AssumethatC is not sopowerful thattheuniverseis incapableof supportinga copy of C in addi-

tion to theoriginal.(This is certainlytrueof any C conceivablybuilt by humans— seetheformal

definitionof acopy of aphysicalcomputerin Def. 3 in theappendix.)HaveSbesuchacopy of C.

We assumethatfor any pair of t = 0 input valuesfor C, thereis at leastoneworld-line of theuni-

versein which C’s input is oneof thosevaluesandthe othervalueconstitutesthe input of C’s

copy (i.e., we have input-distinguishability).

Applying Thm.1 to our two computers,weseethatthereis afinite intelligibility setthatis not

intelligible to C, i.e., therearequestionsconcerninganS thatcannotevenbeposedto C. (More

formally, thereis eithersucha setfor C or for its copy, S.) In addition,by Thm.2, thereis a finite

question-independent(andthereforepotentiallypose-able)intelligibility setconcerningS that is

not predictableto C. In otherwords,theremustbea question-independentintelligibility function

concerning S that C predicts incorrectly, no matter what the input to C.

ThebinarypartitionoverUT inducedby thisunpredictableintelligibility functionconstitutesa

questionconcerningthetime T stateof S. In additionevery oneof thesetof potentialinputsto C
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correspondsto a subsetof U0, andthereforecorrespondsto a subsetof thepossiblestatesof C’s

“input section”at time 0. (In Ex. 1, X(.) is setup sothatevery elementin {x} correspondsto one

andonly onestateof C’s input sectionat time 0.) Similarly, every outputof C correspondsto a

subsetof Uτ andthereforeasubsetof thepossiblestatesof C’s “outputsection”at timeτ. Accord-

ingly, our resultmeansthat thereis no input to C at time 0 thatwill resultin C’s outputat time τ

having thecorrectanswerto ourquestionconcerningthetimeT stateof S.For 0 < τ < T, thiscon-

stitutesa formal proof thatno computercanpredictthefuturefasterthanit occurs.(Or morepre-

cisely, that the universe cannot support more than one copy of such a computer.)

This means,in essence,that Laplacewaswrong: even if the universewerea giant clock, he

would not have beenableto reliably predicttheuniverse’s futurestatebeforeit occurred.Viewed

differently, Thm.2 meansthatregardlessof noiselevelsandthedimensionsandothercharacteris-

tics of theunderlyingattractorsof thephysicaldynamicsof various,therecannotbea time-series

prediction algorithm [9] that is always correct in its prediction of the future state of such systems.

Notethatthereis no requirementthattheinitialization time,questiontime,and/oroutputtime

of thecomputerS’spartitionsequal0, T, andτ respectively, thevaluesthey have for C. All thatis

requiredis that this S bea copy of C. In particularthepossibility is allowedthatS is a temporal

translation of C, either forward or backward in time.

In addition,asmentionedpreviously, theresultalsoholdswhentheinitialization time is 0 and

theoutputtime is someτ > 0, but thequestiontimeT < τ. In otherwords,thecomputercanrunan

arbitrarily long time past T andstill mustmake mistakes.Perhapsmoresurprisingly, the result

still holdsif notonly is T < τ, but in additionT < 0. In thiscasetheresultdeniesthepossibilityof

assuredlycorrect“prediction” of what occurredin the time precedinginitialization. Intuitively

speaking,memoryis just asfallible aspredictingthe future.This shouldnot besurprising.After

all, no temporallyasymmetriclaw like thesecondlaw arisesin ouranalysis,soall theresultsmust

be time-symmetric.In fact, the temporally(a)symmetricnatureof the laws of the universeare

irrelevant to Thm. 2  —  that theorem treats the entire universe’s world-line as a single entity.

In oppositionto this formal proof of thenecessaryfallibility of retrodiction,oneis temptedto
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arguethatno contradictionresultsif I asktwo computersto recordeachothers’paststates,only

with oneof themnegated(to try to follow alongwith theproofof Thm.2). SotheclaimthatThm.

2 still holds for T < 0 can’t be true, it would appear, and infallible retrodictionis allowed. To

resolve theconflict betweenthis intuitive argumentandtheexplicitly T-independentnatureof the

proof of Thm. 2, notethat Thm. 2 only saysthat thereis some recordingat which the computer

mustfail. Thesetof all suchretrodictionsencompassesmany thatarequitecomplicated.In par-

ticular, the liar’s paradoxat the heart of Thm. 2 will arise when the recordingsconcernthe

dynamic pre-images of those future states that establish the fallibility of prediction the future.

To illustratethis in moredetail, first notethat if two computersarephysically isolatedfrom

eachotherfor all time, thereis no way eachcanreliably recordtheothers’paststate.Soour two

putative retrodictingcomputersmustbephysically coupled,andthereforemustbeopensystems.

Now considera conventionaldigital versionof sucha computer, C, whoseoutputpartition ele-

mentsarelabelledby thet = τ statesof its outputbits.Soeachpossibleoutputof C is thesetof all

possible statesof theentireuniversethatareconsistentwith someparticulart = τ patternof C’s

outputbits. Call sucha set,of all possiblestatesconsistentwith thepatternof C’s outputbits at

time τ, “aligned” with thatpattern/ time pair. In general,sinceC is open,a setof statesthatare

alignedwith an outputpatternof C’s at time τ will not dynamicallymapto a setthat is aligned

with thosebits at an earlier time T < 0. (Instead,generically, the temporalprojectionof those

statesbackin timewill beconsistentwith multipleoutputpatternsoverC at thatearliertime,with

eachsuchpatternaccompaniedby only a propersubsetof all possibleassociatedstatesof the

externaluniverse.)In thelanguageof Ex. 1, while G"'( Uτ ) is definedpurelyin termsof thet = τ

state of C’s output bits, this need not be the case for G"'( Ut≠t ).

Soto inducetheliar’sparadoxweposeto Saquestionconcerningt = T thatdoesnotconcern

somesetof statesalignedwith C’s outputbits at that time.Ratherthequestionwe poseconcerns

thepre-images(overU) of theindividual t = τ U-spacepartitionelementsthatindex C’s t = τ out-

puts.The sameis true for the computerC’s retrodictionconcerningS. It is thesekinds of ques-

tions that establish the fallibility of retrodiction.
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While theseresultsconcerningboth predictionandretrodictionhold if C andS areisolated

from oneanother∀ t > 0, they alsohold if C andSarecoupledatsuchtimes.Indeed,they holdno

matterwhat the form of suchcoupling.So in particular, we canhave thecouplingconsistof C’s

“observing”someaspectof S.In factthis is thenaturalway to try to doretrodiction.Accordingly,

the impossibility of unerring retrodiction implies the impossibility of unerring observation.

As a moredetailsexample,considera conventionalobservationexperiment,wherewhatvari-

ablein S is observed at time τ is determinedby characteristicsof the experimentalapparatusat

thattime. In otherwords,it is determinedby certaincharacteristicsof u(τ), i.e.,by certaincharac-

teristicsof ^u, i.e.by where ^u is in aparticularpartitionover ^U. Eachelementin thatpartitioncor-

respondsto a different variable to be observed, i.e., to a different question. So in such

conventionalobservation, thereis an implicit question-valuedpartition of ^U. The “observation”

consistsof providing an answerto someassociatedquestion.In other words, in conventional

observation thechoiceof what to observe, togetherwith theresultantobservation,constitutesan

outputpartition.Theinputpartitioninitializing theexperimentthenis awayof forcing(a ^u which

gives)anoutputpartitionwith thedesiredquestion,hopefullyalsohaving thecorrectassociated

answer. (Notethat in this interpretationof a physicalcomputerasanobservationdevice, its input

will in generalnot uniquelyfix its outputanswer, unlike thecasewith predictiondiscussedin Ex.

1.)

Soobservationis simply aninstanceof physicalcomputation.As a result,Thm.2 establishes

theimpossibilityof a device C thatcan,infallibly, take any specificationof somecharacteristicof

the universeasinput, andthenobserve the valueof that characteristic.This impossibility holds

independentof considerationsof light-conesandthe like, andin factholdsjust aswell in a uni-

versewith c = ∞ as it doesin ours.(Alternatively, the time at which the characteristicis to be

observedcanbespecifiedin thecomputer’s input,andthereforecanbefar enoughinto thefuture

sothatthelight-coneemanatingfrom thesettingof thatinputcanintersectwith thatof thecharac-

teristicbeingobserved.)In all this,Thm.2 establishesthatany putative general-purposeobserva-

tion apparatusmust,for somesystemto beobserved,makeamistake in its claimedobservationof

that system.

This unobservability constitutesa sort of non-quantum-mechanical“uncertainly principle”.
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Justlike the Copenhagenversionof the quantummechanicsuncertaintyprinciple, the physical

computationuncertaintyprinciple relieson having an “intelligent” systemperformthe observa-

tion. In contrastto thequantummechanicscasehowever, in thephysicalcomputationversionof

the uncertaintyprinciple,an “intelligent observationalsystem”is given a formal definition (asa

physical computer). See also the discussion in Sec. 4(i).

Justasthe impossibilityof unerringpredictionof thepastmeansthatunerringobservation is

impossible,sotheimpossibilityof unerringpredictionof thefuturemeansthatunerringcontrolis

impossible.More precisely, thereis nothingin themaththat forcesC to play a “passive observa-

tional role” in thecouplingwith S.Sowe canjust aswell view Thm.2 asestablishingtheimpos-

sibility of an apparatuscapableof ensuringthat thereis no discrepancy betweena value in its

“answersection”andan associatedcharacteristicof a systemS external to C. (Note that while

weakpredictabilitydoesnot requirethatx fixesthevalueof yα independentof theinitial stateof

S,nor doesit forbid x to fix yα; it only requiresthatyα correctlyanswerstheassociatedquestion

concerningS.)Accordingly, thereis no suchthing asa general-purposecontrollerthatworksper-

fectly, in all situations.

Theseimpossibility resultshold even if onetries to have the input to thecomputerexplicitly

containthecorrectvalueof thepredictionor observation.(Note thatsincetheuniverseis single-

valuedanddeterministic,sucha valuemustexist.) Impossibility alsoobtainsif the input is sto-

chastic, since it holds for each input value individually.

3. THE MATHEMATICAL STRUCTURE RELATING PHYSICAL COMPUTERS

There is a rich mathematicalstructuregoverning the possiblepredictability relationships

amongsetsof physicalcomputers,especiallyif onerelaxesthepresumptionthatthey arepairwise

input-distinguishable. This section presents some of that structure.
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i)  The graphical structure over a set of computers induced by weak predictability

Thm.2 directly addressespredictabilityrelationswithin pairwise-distinguishablesetsof mul-

tiple computers.However onecanalsouseit to derive resultsfor thepredictabilityrelationships

within othertypesof setsof computers.For example,considera setof n physicalcomputers{C i}

suchthatC1 > C2 > ... > Cn > C1. If thatsetis only pairwise-distinguishable,wecanhaveC1 > C2

> ... > Cn but still not have C1 > Cn. (SeeEx. 2" in theappendix.)So it would seemthatThm. 2

doesnot precludehaving Cn > C1, i.e.,doesnot precludepredictabilitycycles.It turnsout though

thatsuchcyclesareimpossibleif oneconsiderssetsthataremorethanjust pairwisedistinguish-

able. An example is the following corollary of Thm. 2:

Corollary 2: It is not possibleto have a (fully) distinguishablesetof n physicalcomputers{C i}

such that C1 > C2 > ... > Cn > C1.

What are the generalconditions under which two computerscan be predictableto one

another?By Thm. 2, we know they aren’t if they’re input-distinguishable.Whataboutif they’re

oneandthe same?No physical computeris input-distinguishablefrom itself, so Thm. 2 doesn’t

apply to this issue. However it still turns out that Thm. 2’s implication holds:

Theorem 3: No physical computer is predictable to itself.

Intuitively, this resultfollows from thefact thata computercannotmake asits predictionthe

logical inverseof its prediction.An importantcorollary of this result is that no outputpartition,

consideredin isolationof any input partition, is predictableto a physical computerthat hasthat

outputpartition.CombiningThm. 3 andCoroll. 2 andidentifying the predictabilityrelationship

with an edgein a graph,we seethat fully distinguishablesetsof physical computersconstitute

(unionsof) directedacyclic graphs.The allowed graphicalstructureof otherkinds of sets(e.g.,

pairwise-distinguishable ones) is not well-understood at present.
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ii) God computers, omniscience, and variants of error correction

Whenconsideringsetsof morethantwo computers,it is importantto realizethat while it is

symmetric,theinput-distinguishabilityrelationneednot betransitive.Accordingly, separatepair-

wisedistinguishablesetsof computersmaypartially “overlap” oneanother. Similarly, stipulating

the values of the inputs of any two computers in a pairwise-distinguishable set may force some of

the other computers in that set to have a particular input value.

Coroll. 2 doesnot apply to a pairwise-distinguishableset.To analyzesuchsets,first definea

god computer to beany physicalcomputerin asetof computerssuchthatall otherphysicalcom-

putersin thatsetarepredictableto thegodcomputer. By Thm.2, no pairwise-distinguishableset

of computerscancontainmorethanonegodcomputer. Thereis atmostonecomputerin any pair-

wisedistinguishablesetthatcancorrectlypredictthefutureof all othermembersof thatset,and

moregenerallyatmostonethatcanaccuratelypredictthepastof, observe,and/orcontrolany sys-

tem in that set.

Evena godcomputerin a pairwise-distinguishablesetmaynot beableto correctlypredictall

othercomputersin its setsimultaneously. The input value it needsto adoptto correctlypredict

someC2 mayprecludeit from correctlypredictingsomeC3 andvice-versa.Oneway to analyze

this issueis to considera compositepartitionY2×3 definedby theoutputpartitionsof C2 andC3.

We cantheninvestigatewhetherandwhenour god computercanweakly predict the composite

outputpartition.To thatend,definea computerC1 in a setof pairwise-distinguishablecomputers

{C1, C2, ...} to beomniscient if thecompositeoutputpartitionY2×3×... is predictableto C1. It is

straight-forward to verify that an omniscient computer is a god computer.

Now in general,onemightpresumethattwo non-godcomputersin apairwise-distinguishable

set could have the propertythat, while individually they cannotpredict everything,considered

jointly they would constitutea godcomputer, if only they couldwork cooperatively. An example

of suchcooperativity would behaving oneof thecomputerspredictwhentheotherone’s predic-

tion is wrong.It turnsout thoughthatundersomecircumstancesthemerepresenceof someother
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third computerin thatpairwisedistinguishablesetmaymake sucherror-correctionimpossible,if

that other computer is omniscient.

As an exampleof this, say we have threepair-wise distinguishablecomputersC1, C2, C3,

whereC3 alwaysanswerswith a bit (i.e., /∃ yq
3 suchthat A(yq

3) |⊆ B). We want C2’s output to

“correct” C3’s predictions,andwe alsowant to have thosepredictionsmadeby C3 (potentially)

concernC1. Sohave C1 beintelligible to C3. Thenit turnsout thatdueto Thm. 2, if C1 is omni-

scient,it is not possiblethatC2 alwayscorrectlyoutputsa bit sayingwhetherC3’s answeris the

correctresponseto C3’s question.This is statedformally (andthenderived)asCorollary 3 in the

appendix.This resultevenholdsif Y2×3 is only intelligible to C1, without necessarilybeingpre-

dictable to it.

Coroll. 3 canbeviewedasa restrictionon theefficacy of any errorcorrectionschemein the

presenceof a (distinguishable)omniscientcomputer. Thereareotherrestrictionsthatholdevenin

theabsenceof sucha third computer. An examplearisesif weconsidertwo distinguishablemutu-

ally intelligible physicalcomputersC1 andC2, wherebothA(y1
q) ⊆ B andA(y2

q) ⊆ B ∀ y1
q ∈

{y 1
q} andy2

q ∈ {y 2
q}. For suchcomputers,it turnsout thatThm.2 meansthatit is impossiblefor

C1 andC2 to be“anti-predictable”to eachother, in thesensethatfor eachof them,theprediction

they makeconcerningthestateof theothercanalwaysbemadeto bewrongby appropriatechoice

of input. This is proven asCorollary 4 in the appendix.

iii) Physical computation analogues of Turing Machines

Thereareseveralwaysthatonecanrelatethemathematicalstructureof physicalcomputation

to thatof conventionalcomputerscience.Herewe sketchthesalientconceptsfor onesuchrela-

tion couplingphysical computationand the mathematicalstructuregoverningTuring machines

(TMs).

A TM is a device that takes in an input string on an input tape,thenbasedon it produces

asequenceof output strings,either “halting” at sometime with a final output string (when an

internal“halt” stateis entered),or never halting.As analternative, thefactthatthehalt statehas/
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hasn’t beenenteredby any time can be reflectedin a specialassociatedpatternin the output

string, in which casethesequenceof outputstringscanalwaysbe taken to be infinite. As expli-

catedabove, in the realworld inputsand(sequencesof) outputsareelementsof partitionsof ^U.

Soin onetranslationof TMs to physicalcomputers,stringsontapesarereplacedwith elementsof

thepartitionsX(.) andY(.).Onewayof doingthis is to have{x} bethesetof all strings.,{y q} then

consistsof a singlepartitionq thatdividesup
^
U theexact sameway asthe input partitiondoes,

only with A(q) being the set of all infinite sequencesof strings.For any
^
u, X(

^
u ) is an input

string,andY(
^
u ) is theassociatedsequenceof stringsgeneratedby runningtheTM on thatinput

string.Having Y(
^
u ) specifyboththeinitial stringandtheensuringsequenceof stringsis analo-

gous to the conventional way of implementing reversible computation [2-6].

Ratherthanthrougha setof internalstates,read/writeoperations,state-transitionrules,etc.,

thetransformationof inputsto outputsin aphysicalcomputeris achievedsimply throughthedef-

inition of thepairof anassociatedinputpartitionandoutputpartition.For suchaTM thatdeclares

in its outputstringwhetherit hashalted,thephysicalcomputationanalogueof whethera compu-

tation will ever halt is simply whether^u is in some special subset of {y}.

In the real world X(.) andY(.) usuallydivide up
^
U differently. In this they areanalogousto

TM’s with multiple tapesratherthanconventionalsingle-tapeTMs. Oneway to generalizethis,

motivatedby thedefinitionof predictability, is to requireof eachq ∈ {y q} thatA(q) is thesetof

all possiblesequencesof strings.Differentq ∈ {y q} aretheninterpretedasequivalentto questions

“what sequence of output strings ensures from some input string s?” for different s.

In this context thequestion-independentnatureof weakpredictabilityis looselyanalogousto

a TM’s beingable to overwrite the “question” originally posedon its tapewhenproducingits

“answer” on that tape.We will adoptthis identificationfrom now on, identifying the physical

computationanalogueof a TM asan input partition togetherwith the answercomponentof an

output partition.

This identificationmotivatesseveralanaloguesof theHaltingtheorem.Sincewhetherapartic-

ularphysicalcomputerC2 “halts” or notcanbetranslatedinto whetherits outputis in aparticular
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region, thequestionof whetherC2 haltsis a particular(question-independent)intelligibility func-

tion of C2. Correctlyansweringthequestionof whetherC2 haltsmeanspredictingthatintelligibil-

ity function of C2. In the context of physical computationit is naturalto broadenthe issueto

concernall intelligibility functionsof C2. Accordingly, in this analogueof theclaim resolvedfor

TM’s (in the negative) by the Halting theorem,oneasksif it is possibleto constructa physical

computerC1 thatcanpredictany computerC2. To answerthis,simplyconsiderthecasewhereC2

is a copy of C1. By applyingThm.’s 2 and3 to this case,oneseesthattheansweris no, in agree-

mentwith theHalting theorem.(Evenif onestrengthensthenotionof predictability, asin thenext

subsection, the answer is still no, by Thm. 6 presented below. See also Coroll. 4 in the appendix.)

There exist a numberof alternative physical computeranaloguesof the Halting problem.

Thoughnotpursuedat lengthhere,it is worthbriefly presentingonesuchalternative.Thisalterna-

tive is motivatedby arguing that, in the realworld, oneis not interestedsomuchin whetherthe

computationwill ever “halt”, but ratherwhethertheassociatedoutput(sayconventionally“read”

atsomepre-fixedtime) is “correct”. If wetake“correct” to berelative to aparticularquestion,this

motivatesthe following alternative analogueof the Halting theorem:Given any setof physical

computer{C i}, thereis nomemberof thatsetC suchthatfor everyC' ∈ {C i}, (i) C' is intelligible

to C; and(ii) for all questionsq' ∈ {y' q}, thereis anx valuewhich inducesC to answerwith a1 if

and only if the answer of C' to q' is correct. SeeTheorem 4 in the appendix.

iv)  Strong predictability

At theotherendof thespectrumfrom distinguishablecomputersis thecasewhereonecom-

puter’s input canfix another’s,by beingobservedby thatothercomputer(or perhapsevenby set-

ting that othercomputer’s input moredirectly). It is whensuchrelationshipshold that physical

computationanaloguesof variousmembersof theChomsky hierarchy, andparticularlyuniversal

Turing machines, arise.

To capturesucha relationship,we saythat a computerC2 is strongly predictable to C1 (or

equivalently thatC1 can strongly predict C2), andwrite C1 >> C2 (or equivalentlyC2 << C1) if
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two conditionshold.First,C2 mustbeintelligible to C1. Second,for every intelligibility function

concerningC2, f, andfor everyx2, ∃ x1 ∈ {x 1} thatstrongly induces thepair (f, x2). Thatis, there

existsa valueof x1 suchthatX1(
^
u ) = x1 forcesY1

p( û ) to equal(A(f), f( û )) andreflectsthe

fact that X2( ^u ) = x2 (or, viewed alternatively, forces it to be the case that X2( ^u ) = x2).

If C1 canstronglypredictC2, thenfor any x2 andassociatedanswery2
α — for any computa-

tion C2 might undertake — thereis an input to C1 that is uniquelyassociatedwith x2 andthat

causesC1 to output (any desiredquestion-independentintelligibility function of) the associated

y2. By alsoensuringthatX2( ^u ) = x2, with thatinputweensurethatC1 is outputtingC2’s conclu-

sion for thedesiredpremise,x2. Intuitively, thereis someinvertible “translating”mapthat takes

C2’s inputand“encodes”it in C1’s input, in suchaway thatC1 can“emulate”C2 runningonC2’s

input,andtherebyproduceC2’s associatedoutput.In this way C1 canemulateC2, muchlike uni-

versalTuring machinescan emulateother Turing machines.(Seethe definition of a universal

physical computer below.)

Strongpredictabilityof acomputerimpliesweakpredictabilityof thatcomputer. (Unlikewith

weakpredictability, thereis no suchthing asstrongpredictabilityof a partition.)So resultscon-

cerningweakpredictabilitythatarenot predicatedon input distinguishability(which is impossi-

ble for strongpredictability)still hold if they arechangedby replacingweakpredictabilitywith

strong predictability. This includes in particular Thm. 3 and Coroll. 2 (but not Thm. 2).

Weakpredictabilitydoesnot imply strongpredictabilityhowever. Moreover, themathematics

for setsof physicalcomputerssomeof whicharestronglypredictableto eachother(andtherefore

not distinguishable)differsin somerespectsfrom thatwhenall thecomputersaredistinguishable

(the usualcontext for investigationsof weakpredictability).An exampleis the following result,

which shows that strong predictability always is transitive, unlike weak predictability.

Theorem 5: Considerthreephysical computers{C1, C2, C3}, anda partition π, whereboth C3

andπ are intelligible to C1.

i)  C1 >> C2 > π ⇒ C1 > π;
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ii) C1 >> C2 >> C3 ⇒ C1 >> C3.

Strongpredictabilityalsoobeys thefollowing resultwhich is analogousto bothThm.’s 2 and

3:

Theorem 6: Considerany pairof (notnecessarilydistinguishable)physicalcomputers{C i: i = 1,

2}. It is not possible that both C1 >> C2 and C1 << C2.

Many of the conditionsin the precedingresultscanbe weakenedandthe associatedconclu-

sionsstill hold (e.g.,we canweakentherestrictionthat intelligibility functionshave imagespace

⊆ B.) Theseweakenedversionareusuallymoreobscurethough,which is why they arenot pre-

sented here.

A TM T1 canemulatea TM T2 if for any input for T2, T1 producesthe sameoutputasT2

when given an appropriatelymodified version of that input. (Typically, the “modification”

involvespre-pendinganencodingof T2 to thatinput.)Theanalogousconceptfor a physicalcom-

puteris strongpredictability;onephysicalcomputercan“emulate”another(not distinguishable,

in general)computerif it canstronglypredictthat otherone.Intuitively, the two componentsof

T1’s emulatingT2, involving T2’s input andits computationalbehavior, respectively, correspond

to the two componentsof the requirementconcerningx1 valuesthat occur in the definition of

strongpredictability. Therequirementthatthex1 valueforcestheanswerof y1 to equalthatof any

intelligibility functionof C2 is analogousto encoding(thecomputationalbehavior of) theTM T2

in a string provided to the emulatingTM, T1. Requiringaswell that the valuex1 ensuresthat

X2( ^u ) = x2 is analogousto alsoincluding an “appropriatelymodified” versionof T2’s input in

thestringprovided to T1. (Note thatany mappingtakingx2 ∈ {x 2} to anx1 that in turn induces

thatstartingx2 is invertible,by construction.)This motivatesthe following definitionof theana-

logue of a universal TM:
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Definition 9: A universal physicalcomputerfor a setof physicalcomputersis a memberof that

set that can strongly predict all other members of that set.

Note that ratherthanreproducetheoutputof a computerit is stronglypredicting,a universal

physical computerproducesthe value of an intelligibility function appliedto that output.This

allows thecomputersin our setto have differentoutputspacesfrom theuniversalphysicalcom-

puter. However it contrastswith the situationwith conventionalTM’s, beinga generalizationof

such TM’s.

v)  Prediction complexity

In computersciencetheory, givena universalTM T, thealgorithmiccomplexity of anoutput

strings is definedasthe lengthof thesmallestinput strings' thatwheninput to T producess as

output.To constructour physicalcomputationanalogueof this,we needto definethe“length” of

an input region of a physical computer. To do this, first, given any computerC andpartition π

of
^
U, definea (weak) prediction input set as a minimal subsetof x valuesneededfor C to

weakly induceall intelligibility functionsof π. C-1(π) is definedasthesetof all suchprediction

inputsets.Intuitively, thepredictionsetof C for π / C' is aminimalsubsetof {x} thatis neededby

C for π / C' to be predictable to C.

Next, to definethephysicalcomputationanalogueof the lengthof a string,givena computer

C definethe length of a subsetof Ξ ⊆ {x} asthenegative logarithmof thevolumeof all ^u ∈ ^U

suchthatX( ^u ) ∈ Ξ. Wewrite thisasl(Ξ). Thenif C > π (soC-1(π) is non-empty),theprediction

complexity of π for C is theminimal suchlengthover thesetC-1(π). Wewrite thatcomplexity as

c(π | C). (Notethatthepredictioncomplexity is definedin termsof weakpredictabilityratherthan

strong; strong predictability will arise in our bounds on it.)

We areprimarily interestedin predictioncomplexities of binarypartitions,in particularof the

binarypartitionsinducedby theseparatesingleelementsof multi-elementpartitions.(Thebinary

partition inducedby someparticularelementp ∈ π' is just the binary-valuedfunction of ^u of
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whetheror not π'( ^u ) = p.) To seewhat our definitionsmeanfor sucha partition, sayyou are

givensomesetσ ⊂ ^U (i.e., you aregivena binarypartitionof ^U). Supposefurtherthatyou wish

to know whethertheuniverseis in σ, andyou have somecomputerC to useto answerthis ques-

tion (i.e.,evaluateall four intelligibility functionsof thepartition(σ,
^
U \ σ). Thenlooselyspeak-

ing, the prediction complexity of σ with respectto C is the minimal amount of Shannon

informationthat mustbe imposedin C’s inputs in order to be assuredthat C’s outputcorrectly

answersthatquestion.In particular, if σ correspondsto a potentialfuturestateof somesystemS

externalto C, thenc(σ | C) is ameasureof how difficult it is for C to predictthatfuturestateof S.3

Looselyspeaking,themoresensitively that futurestatedependson currentconditions,themore

complex it is.

In many situationsit will bemostnaturalto choosethevolumemeasureimplicitly definingl(.)

to be uniform over accessiblephasespacevolume,so that the complexity of Ξ is the negative

physicalentropy of constraining^u to lie in Ξ. But thatneednot bethecase.For example,we can

insteaddefinethemeasuresothatthevolumeof eachelementof theassociated{x} is somearbi-

trary positive real number. In this case,the lengthsof the elementsof {x} providesus with an

arbitrary ordering over those elements.

Thefollowing exampleillustratestheconnectionbetweenlengthsof regionsΞ andlengthsof

strings in TM’s:

Example 3: In a conventionalcomputer(seeEx. 1 above), we can definea “partial string” s

(sometimescalleda “file”) takingup thebeginningof aninput sectionof memoryasthesetof all

“completestrings” takingup theentireinput sectionwhosebeginning is s. We canthenidentify

the input to thecomputerassucha partialstring in its input section.(Typically, therewould bea

specialfixed-size“length of partialstring” region evenearlier, at thevery beginningof the input

section,telling thecomputerhow muchof thecompletestringto readto getthatpartialstring.)If

we appendcertainbits to s to geta new longerinput partialstring,s', thesetof completestrings

consistentwith s' is a propersubsetof thesetof completestringsconsistentwith s.Assumingour
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volumemeasuredµ is independentof the contentsof the “length of partial string” region, this

means thatl(s')≥ l(s).

This is in accordwith theusualdefinitionof thelengthof a stringusedin Turing machinetheory.

Indeed,if s' containsn morebits thandoess, thenthereare2n timesasmany completestrings

consistentwith sasthereareconsistentwith s'.Accordingly, if we take logarithmsto havebase2,

l(s') = l(s) + n.

Saywe want our computerto be ableto predictwhether^u lies in somesetσ. (To maintainthe

analogywith Turingmachines,σ coulddelineatean“outputpartialstring”. Thiscouldbedonefor

exampleby delineatinga particularvalueof a prediction,perhapseven onein someothercom-

puter.) In theusualway, thiscorrespondsto having thebinarypartition{ ^u ∈ σ, ^u ∉ σ} beweakly

predictableto our computer. So the predictioncomplexity of that predictionis the lengthof the

shortestregion of our input spacethat will weakly inducethat prediction.(Note that sincewe

requirethatall four intelligibility functionsof σ beinduced,morethanoneinput “partial string”

is required for that induction, in general.)

We now derive a boundon differencesof thepredictioncomplexity of a partitionwith respect

to two differentuniversalcomputers.First, given C togetherwith someothercomputerC', we

needto defineastrongprediction input setof C for thetriple of (C', asubsetΞ' of theinput val-

uesof C', anda subsetf ' of the intelligibility functionsfor C'). This is a minimal subsetof C’s

inputvaluesneededto stronglyinduceeverypair (f' ∈ f ', x' ∈ Ξ'). Whenthereis at leastonesuch

subset we will write C-1(C', Ξ', f ') for the set of all such subsets.

Thefactthatyp values(cf. thedefinitionof predictionpartitionin theappendix)specifytheset

A(yq) makesworking with Def.’s 10 and11 a bit messy. In particular, to relatepredictioncom-

plexity to propertiesof theassociateduniversalphysicalcomputerwe mustusea setof “identity”

intelligibility functions defined as follows:

Definition 12 (i): Given a space Z⊆ B and a physical computer C = (X, Y),
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{I C
Z} is the setof all question-independentintelligibility functionsof C whereA(IC

Z) = Z,

and where∀ û such that A(Yq( û )) = Z, ICZ( û ) = Yα( û ).

We also will need the following definition:

Definition 12 (ii): Givena spaceZ ⊆ B anda physicalcomputerC = (X, Y), “C←(Z)” is defined

as those x∈ {x} such that X( û ) = x ⇒ A(Yq( û )) ⊆ Z.

Sofor example,if Z = B, a pair (x2 ∈ [C2]←(Z), I2Z ∈ {I 2
Z}) is aninput to C2 andanintelligibil-

ity functionof C2’soutput,respectively. Thatinputx2 inducesanassociatedoutputquestion,q2 ∈

{y 2
q}, thattakeson(both)B valuesasonevariesover the ^u input to it. Similarly, theintelligibility

function x2Z takes on (both)B values as one varies over the inputs to it.

Usingthesedefinitions,we now boundhow muchmorecomplex a partitioncanappearto C1

thanto C2 if C1 canstronglypredictC2. Thoughsomewhat forbiddingin appearance,intuitively,

the bound simply reflects the complexity cost of “encoding” C2 in C1’s input.

Theorem 7:Given any partitionπ and physical computers C1 and C2 where C1 >> C2 > π,

i) c(π | C1)   - c(π | C2) ≤

ln[o(2π)]  -  ln[3]  +

max {Z ⊆B, x2∈[C2]
←

(Z), I2Z∈{I 2
Z}} l[ (C1)

-1
(C2, x2, I2Z) ]    -

min {Z ⊆B, x2∈[C2]
←

(Z)} l[ x2 ] ,

or alternatively,

ii) c(π | C1)   - c(π | C2) ≤

ln[o(2π)]    +

min {Z ⊆B, x2∈[C2]
←

(Z),  I2Z∈{I 2
Z}} l[ (C1)

-1
(C2, x2, I2Z) ]   -

min {Z ⊆B, x2∈[C2]
←

(Z)} l[ x2 ]  .
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As onevariesπ, in both boundsin Thm. 7 how the bounddependson C1 andC2 doesnot

change.In addition,thoseboundsareindependentof π for all π sharingthesamecardinality. Soin

particularthey areindependentof theprecisechoiceof partitionπ so long asit is a binaryparti-

tion like thosediscussedin Ex. 3. In addition,intuitively speaking,theterml[ (C1)
-1

(C2, x2, I2Z)

] occurringin bothboundsis relatedto thecostof emulatingtheonecomputeron theother. This

illustrateshow Thm. 7 is thephysicalcomputationanalogueof theresultin Turing machinethe-

ory thatthedifferencein algorithmiccomplexity of afixedstringwith respectto two separateTur-

ing machinesis boundedby thecomplexity of “emulating” theoneTuring machineon theother,

independent of the fixed string in question.

Considerthepossibilitythatfor thelaws of physicsin our universe,thereexist partitionsX(.)

andY(.) that constitutea universalphysical computerC* for all otherphysical computersthat

exist in our universe.Thenby Thm. 6, no othercomputeris similarly universal.Thereforethere

existsa uniquepredictioncomplexity measurethat is applicableto all physicalcomputersin our

universe,namelycomplexity with respectto C* . (Thiscontrastswith thecaseof algorithmicinfor-

mation complexity, wherethereis an arbitrarinessin the choiceof the universalTM used.)If

insteadthereis no universalphysical computerin our universe,thenevery physical computerC

mustfail at leastonceat (strongly)predictingsomeotherphysicalcomputer. (Notethatunlike the

casewith weakpredictabilityconsideredin Thm. 2, herewe aren’t requiringthat theuniversebe

capable of having two distinguishable versions of C.) This establishes the following:

Theorem 8: Eithertherecannotbecomputerthatstronglypredictsall othersthatexist in ouruni-

verse, or there is a unique universally applicable complexity measure in our universe.

Similar conclusionshold if onerestrictsattentionto a setof (physically localized)conventional

physicalcomputers(cf. Ex. 1), wherethelight conesin thesetarearrangedto allow therequisite

informationto reachtheputative universalphysicalcomputer. Seealsothediscussionof realities

below.
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4. DISCUSSION

i) In what sense might reality “be” a computer?

Noneof theanalysisin thispaperrequiresthatthepossiblestatesof theuniverseall becharac-

terizableby a single set of often-repeatedvery regular patternsencapsulatedin someconcise

“physical laws”. The resultsstill hold if each ^u ∈ ^
U is just anarbitrarytemporally-indexedcol-

lection of events,with little to no discernibleregularity relating thoseevents.Broadeningthe

interpretationfurther, whereasin adeterministicuniverseu(t) uniquelysetsall u(t' ≠ t), nothingin

our analysisrelies on having that or any other kind of structureapply to each ^u. Determinism

itself is not needed.In fact,
^
U canbeany kind of setwhatsoever, evenonewhoseindividual ele-

mentscannotreasonablybeviewedas“time-indexedcollectionsof events”,regularor otherwise,

or even one whose elements are not vectors, and our results still hold.

As mentionedin theintroduction,severalauthorshave speculatedthattheentireuniverseand

its physical laws arenot someunderlyingstructuregoverned by the conclusionsof a computer,

but ratherin somesenseare a computer, without any extraneous“underlyingstructure”.In light

of thebreadthof thepossible
^
U to which this paper’s analysisapplies,it is interestingto consider

this issuewhen“computer”is interpretedto meanaphysicalcomputer. Thisuseof themathemat-

ics of physical computationimplicitly differs from the analysisup to now in which ^u is a time-

orderedcollectionof eventsthatcontainsa computer, embodiedin somesubsetof its degreesof

freedom.In contrast,here^u canbecompletelyarbitrary, andour partitionsareallowedto involve

all of thedegreesof freedomof ^u, not just somesubsetof them.More importantly, while we still

identify a particularinstantiationof thelaws of theuniversewith a ^u, we do not identify whatare

intuitively viewed as the “physical properties”of that instantiationdirectly with that ^u, per se.

Ratherwe collectively identify all of thosephysicalproperties— the totality of what is observ-

ableto humansconcerningtheuniverse— asthetriple of (acomputationalanswer, to aparticular

(high-dimensional)question,in responseto a particularinput). Theprecisesuchtriple is theone

that is inducedby that ^u in concertwith theX(.) andY(.) of somephysical computer. Soherea
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particular^u ∈ ^
U, by itself, hasno“physicalmeaning”whatsoever; it is theinput-question-answer

triple thatit induces,via X(.) andY(.), thatprovidesall suchmeaning.Without thatassociatedtri-

ple, ^u is just a point in a set, with no ancillary structure that could imbue it with meaning.

This identificationof all physically meaningfulpropertiesof the universe^u with the single

associatedinput-question-answertriple of a computerhassomequite reasonablequalities.For

example,thevalueof theinputgivesarestrictionon
^
u. Intuitively this restrictionis akin to aspec-

ification of thephysicalboundaryconditionsunderwhich theanswerto thequestionof theuni-

verseis calculated.Notethatthatinputvaluenotonly fixestheuniverse’sanswerthough,but also

thevery questionbeinganswered.Sofor majorenoughchangesto theinput, in generaltherehas

to beachangein thatquestionbeingansweredby theuniverse.This too is reasonable;intuitively,

the original question is no longer meaningful given a large enough change to
^
u.

Underthis identification,the full mappingfrom arbitrary inputsto the associatedquestion/

answerpairsprovidesall possiblepairsof boundaryconditionsandassociatedphysicalproperties

of theuniverse’sentireworldline.In otherwords,thatmapping — thecomputerC — constitutes

the laws of the universe.So underthis identificationwe do not needelaborateconsiderationsof

grammars,formulationsof logic, the foundationsof mathematicalreasoningetc. to expressthe

laws of theuniverse.Indeed,sinceweexpressthelaws via a structureitself definedin termsof
^
U

(namely C), the states
^
U and the laws governing them form a self-contained unit.

To formalizethis, we saythata pair (
^
U, C ) is a reality. Onereality is a copy of anotherif

their computersarecopiesof eachother. If two realitiesarecopies,thentheir law-providing com-

putershave identical relationshipsbetweentheir inputs,the questionsthey associatewith those

inputs,andtheanswersthey provide to thosequestions.Accordingly, we identify a particularset

of “lawsof theuniverse”with anequivalenceclassof realitiesthatarecopiesof oneanother, even

if the spaces
^
U of those realities differ.

Saywearegivenareality (
^
U, C ). Wecancalculatefor whatsets{C i} of (perhapsnon-distin-

guishable)computersdefinedover ^U the joint outputpartitionY1×2×... is predictableto C. Label

that setof setsχ. For any ^u, C’s answeris thevalueof (anassociatedintelligibility functionof)

theoutputsof any oneof those{C i} ∈ χ takenall atonce.Next, givensome^u ∈ ^
U, thereis some

subsetχ( ^u ) ⊆ χ of {C i} that areweakly inducedby C’s associatedinput, X( ^u ). These,intu-
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itively, are the {C i} that areboth predictableto C andareactuallypredictedby C for the ^u at

hand.In a certainsense,if C is the“laws” of thereality, thenhaving Y1×2×... for a particular{C i}

∈ χ bepredictableto C is a minimal conditionfor sayingthatthecomputersin {C i} are“allowed

by” or “consistentwith” (
^
U, C ). Having X( ^u ) inducethat{C i} for the ^u athandis thenamini-

mal conditionfor sayingthatthe{C i} are“real”, and“exist” in that ^u (cf. Thm.8). (It is interest-

ing to speculateon thesimilarity betweenhaving multiplesets{C i} ∈ χ( ^u ) andthemany worlds

interpretation of quantum mechanics.)

Note thatby definitionof predictability, whethersome{C i} “exists” is a functionof whether

C cancorrectlygive its answersfor ^u other than the single one at hand. This relianceon counter-

factual ^u to ascribeexistenceto a {C i} reflectsthefactthatasingle ^u, by itself, containsno infor-

mation.Even if ^u is a collectionof high-dimensionalreal numbers(e.g.,a collectionof phase

space positions), it has no meaning except in comparison to other such collections.

As aparticularexampleof all this,wecanhave theelementsof {C i} betheentiresequenceof

predictions/observationsthat constitutethe mind of someparticularscientist.Doing so, we see

thata reality inducesa setof scientists,eachgivenby a different{C i}. As anotherexample,the

humanendeavourcomprisingthefield of physicsconstitutesacomputer, with its inputandoutput

partitionsdelineatedby statesof themind(s)of oneor morephysicists.Thegoalof thefield is to

havethecomputercomprisedof thosetwo partitionsbecomputationallyequivalentto (i.e.,acopy

of) thatof theembeddingreality. Theanalysisof this paperprovidessomeresultsconcerningthe

possiblerelationshipsbetweenthefield of physicsandthoselaws governingour embeddingreal-

ity. For example,by Thm.2, if wepresumethatthemindsof physicistsarepredictableto thelaws

of the universe, then those laws are not predictable to physicists.

In additionto resultsconcerninghumanendeavours,the analysisof this paperalsoprovides

resultsconcerningsetsof mathematicallaws governinguniverses.For example,for finite o(
^
U ),

it is oftenreasonableto have onex valuefor each ^u, andsimilarly oney valuefor each ^u (that is

the maximumpossiblenumberof both x’s andy’s). Sincethereare2o( Û ) binary-valuedques-

tions concerning^U, this meansthe (usuallyvast)majority of questionsarenot in {y q}. So the

“laws of theuniverse”cannotposemostquestionsconcerningthatuniverse(cf. Thm.1). Further-

more,by Thm.3, weknow thattherearequestionsq (potentiallynot in {y q}) for whichthereis no
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x valuethatcanensurethatC’s answercorrectlygivesq( ^u ). Therearequestionsconcerningthe

universe that we can never force the laws of the universe to answer correctly.

Theseresultsare particularly suggestive if we recall that observation is a form of physical

computation.In ability to poseall questionsthereforeimpliesa “coarse-graining”over thesetof

possibleobservations.It is temptingto try to relatethis to the quantummechanicaluncertainty

principle.Note that this physical computation“uncertaintyprinciple” is differentfrom theThm.

2-basedonediscussedin thetext. Notealsothatwhereasaparticular^u indicesauniqueanswer, a

particularx valueandyq do not. This is suggestive of the indeterminacy of observation in quan-

tum-mechanics— knowing theboundaryconditionsof theuniverseandtheobservationalques-

tion being posed to it need not uniquely fix the associated answer.

Thereareanumberof strongervariantsof all of this thatareworth investigating.In particular,

onecouldaddotherconditionsto thedefinitionof whether{C i} “exists”. An examplewouldbeto

incorporatethe notion of C strongly inducingintelligibility functionsof the {C i}. Among other

things,this would allow usto definethecomplexity, to thecomputerconstitutingthevery laws of

the universe, of answering a particular question.

Anotherexamplearisesin responseto theargumentthatratherthanconveying physicalmean-

ing, the partitionsX and Y are ultimately just arbitrary “interpretations”of ^u, with no further

physical significance.According to this argument,any other interpretation,any othercomputer

definedover thesetof possible^u, canbeviewedasjust aslegitimate.When(asin previoussec-

tionsof this paper)anelectronicworkstationconstitutes^u, this arbitrarinessisn’t a problem.It is

reasonableto saythat theuserof theworkstationprovidesthe interpretationof ^u; it is (s)hewho

ultimatelydeemswhat the inputsandoutputsto thatworkstation“mean”. A differentuserof the

exact sameworkstationundergoing the exact samedynamicsis free to interpret that worksta-

tions’s inputs nd outputsdifferently, and therebyconstitutea different computerC. One might

want lessfreedomof interpretationthoughif ratherthana workstationembeddedin a universe

and accompaniedby an interpretinguserin that universe,the computerunderconsiderationis

supposedto bethevery laws of thatuniversethemselves.This issuecanbeespeciallynettlesome

when we want to view those laws as unique somehow, independent of any interpreting “user”.

This objectionis ultimatelyphilosophical,amountingto a semanticdisagreementover how to
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definewhethertwo realitiesare “the same”,i.e., of how to definewhetherthey have the same

“laws of theuniverse”.Theview expoundedabove is in favor of a “weak” definition,andsimply

saysthata reality’s lawsarenot embodiedin ^u, but ratherin C. An alternative “strong” definition,

overcomingtheobjectionsraisedabove,addsconditionsto theweakdefinition.Theseconditions

inextricably couple ^u andC, via therelationshipbetweenthequestion/ answerpairsin C andthe

associatedelementsin
^
U, anddefinetwo realitiesto “be the same”if they sharethat property.

Formally, wesaythat(
^
U, C ) is computationally equivalent to adifferentreality (

^
U', C' ) if two

conditionshold.First, thetwo realitiesmustbecopiesof eachother, sothattheir computersshare

thesameset-valuedfunctionfrom inputsx to outputs(yq, yα) (asin theweakdefinition).Second,

thetwo computersmustsharethesameset-valuedfunctionfrom inputsto thereality’s responseto

the associatedquestion,i.e., the samefunction from the value of X(
^
u ) to the value of α =

[Yq(
^u )]( ^u ).4 (Notethatuseof this strongerdefinitionin nonway negatesthepropertiesinvolv-

ing setsχ expounded at the beginning of this subsection.)

A relatedway of respondingto the objectionis to considerrealitiesthat do not contradict

themselves, i.e., whosecomputersare infallible (seethe discussionin the appendixjust before

Coroll. 1). Requiringthat a physical computerbe infallible if we areto identify it asa universe

certainlyseemsreasonable.Moreover, if the computersin two realitiesareboth infallible, then

they arecopiesof eachotherif andonly if they arecomputationallyequivalent.So if we restrict

attention to infallible computers,the issueof computationalequivalencebetweenrealities is

reducedto theoriginal issueof whethertherealitiesarecopies,andthereis nodifferencebetween

theweakandstrongdefinitionsof whethertwo realitiesare“the same”.In addition,if C is stable

(seetheappendix),thentheissueof whetherC weaklypredictssomeC' simplifiesto whetherC' is

intelligible to C. Notealsothatfor thecomputersin infallible realities,wecansimplify thedefini-

tion of Y to be just a mappingfrom ^u to questions(the associatedanswersbeingsetautomati-

cally). For all thesereasons,whentrying to capturethehumanconceptof what it meansfor two

universesto “be thesame”,it seemsreasonableto concentrateon equivalenceclassesof infallible

realities that are copies of one another.

ii) Relation of Thm. 2 to previous work
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Any resultsconcerningphysical computationshould,at a minimum, apply to the computer

lying on a scientist’s desk.However thatcomputeris governedby themathematicsof determinis-

tic finite automata,not thatof Turing machines.In particular, theimpossibilityresultsconcerning

Turingmachinesrely on infinite structuresthatdonotexist in any computeronascientist’sdesk.

On the otherhand,whenonecarefully analyzesactualcomputersthat performcalculations

concerningthephysicalworld, oneuncoversa mathematicalstructuregoverningthosecomputers

that is repletewith its own impossibility results.While muchof that structureparallelsTuring

machinetheory, muchof it hasno directanaloguein that theory. For example,it hasno needfor

structureslike tapes,moveableheads,internalstates,read/writecapabilities,andthelike,noneof

which have any obvious relation to the laws of quantum mechanics and general relativity.

Nonetheless,thereareanumberof previousresultsin theliteraturethatcanbeviewedasTur-

ing machineanaloguesof Thm. 2. Many authorshave shown how to constructTuring Machines

outof physicalsystems(seefor example[11, 25] andreferencestherein).By theusualuncomput-

ability results,therearepropertiesof suchsystemsthatcannotbecalculatedon a physicalTuring

machinewithin afixedallotmentof time (assumingeachstepin thecalculationtakesafixednon-

infinitesimal time). In addition, therehave beena numberof resultsexplicitly showing how to

constructphysicalsystemswhosefuturestateis non-computable,withoutgoingthroughtheinter-

mediate step of establishing computational universality [14, 26].

Thereareseveral importantrespectsin which the resultsof this paperextend this previous

work. All of theseprevious resultsrely on infinities of somesort in physically unrealizablesys-

tems(e.g.,in [26] an infinite numberof stepsareneededto constructthephysicalsystemwhose

future stateis not computable).In addition,they all assumeone’s computingdevice is no more

powerful thanaTuringmachine.Also noneof themaremotivatedby scenarioswherethecompu-

tationis supposedto bea predictionof thefuture.Nor arethey extendableto allow arbitrarycou-

pling betweenthe computerand the external universe,as (for example) in the processesof

observation andcontrol.Thereareotherlimitations that apply to many of theseprevious results

individually, while not applyingto eachandevery oneof them.For example,in [26] it is crucial

that we arecomputingan infinite precisionreal numberratherthana “finite precision”quantity
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like an integer. As anotherexample,many of theseprevious resultsexplicitly requirechaotic

dynamics (e.g., [8]). None of these limitations apply to the result of this paper.

iii) Future work

Future work includes investigating the following issues:

i) How are the resultsmodified if one is concernedwith probabilitiesof erroneousprediction

rather than just worst-case analysis of whether there can possibly be erroneous prediction?

ii) How mustthedefinitionsandassociatedresultsbemodifiedfor analogcomputers(sothatone

is concernedwith amountsof errorratherthanwhetherthereis anerror)?Evenif oneis predicting

the futurestateof a stochasticsystem,so long asthatpredictionis falsifiabletheanalysisin this

paperapplies.(SeethediscussionjustbeforeEx. 1.) Howeverhow shouldtheanalysisbechanged

if whatoneis trying to predictis a randomvariable?Alternatively, whatif (asin theclassicalreal

world) ^u hasa definitevalue,but theoutputof thecomputeris a probabilitydistribution?A pre-

liminary analysisof this is presentedjust beforeLemma1 in theappendix.Thereit is proventhat

therecannotbe two computersbothof which have a “degreeof weakpredictability” (a measure

quantifyingtheaccuracy of probabilitydistribution output)equalto 1. Justwhattheupperbound

on such a pair of degrees of weak predictability is unknown.

iii) Sinceby adoptingthe many-world interpretationwe cancastquantummechanicsaspurely

deterministicevolution in Hilbert space,thepresumptionof determinismin this paperdoesnot a

priori invalidateits applicability to quantumsystems.However it is still worth askingwhether

thereany modificationsto thedefinitionsthatwould facilitatetheanalysisfor quantumsystems,

especiallyif we adoptthe Copenhageninterpretation.If therearesuchmodifications,thenhow

aretheensuingresultsdifferentfor quantumsystems?(As anexampleof suchamodification,one

might wantto allow sufficient time betweenT andτ to not run into difficultiesdueto theHeisen-
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berg uncertainty principle.)

iv) Find theexactpointof failure — whichaccordingto (1) and(2) mustexist — of theintuitive

argument“If thecomputeris simply a sufficiently largeandfastHamiltonianevolution approxi-

mator, then it can emulate any finite classical non-chaotic system”.

v) As mentionedin theintroduction,thereis a largebodyof work showing how to embedTM’s in

physicalsystems.Onetopic for futurework is following ananalogousprogramin thedomainof

physicalcomputation,for exampleby investigatingwhatphysicalsystemssupportcopiesof any

element of various sets of physical computers.

vi) Exploiting the generalityof our definitions,it may be possibleto apply the analysisof this

paperto the foundationsof mathematics.As an example,view each ^u ∈ ^
U asa “book”. Each

bookconsistsof a collectionof mathematicalpropositions,for example(thoughnot necessarily)

expressedasstringsover somefixedalphabet.Theprecisechoiceof
^
U canembodyany desired

restrictionson thesetof possiblebooks.Thepair of a questionandanswerthenis a choiceof a

subsetof booksin
^
U. For example,sucha pair could be a subsetof booksall of which contain

propositionsthatall “make thesameclaim” (i.e., give thesameanswer)concerningsomeformal

mathematicalhypothesis(i.e., concerningthe questionat hand).Next, a choiceof an input to a

computeris a restrictionof attentionto a certainsetof books.Soasan,it couldbea restrictionto

a setof booksall of which adhereto a certainsetof axioms(thatsetconstitutethepremisethatis

input to the computer).Finally, the outputfunction is a mappingfrom a book to a questionand

answer. For example, ^U may be a priori restrictedto booksthat containdeclarationsof the sort

“giventheseaxioms,thefollowing is true”. In thatcase,theoutputfunctionis a way of choosing

a singlesuchdeclarationfrom eachbook. (By allowing only onequestionper book, the output

functionmanagesto sidesteptheissueof ensuringno contradictionarisesbetweenits answersto

various questions for the same underlying book.)
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vii) Whatotherrestrictionsarethereon thepredictabilityrelationswithin distinguishablesetsof

physical computersbeyond that they form unionsof DAG’s? In other words,which unionsof

DAG’s canbe manifestedasthe predictability relationswithin a distinguishableset?How does

this answerchangedependingon whetherwe areconsideringsetsof fully input-distinguishable

computersor setsof pairwise-distinguishablecomputers?For what computersare therefinite /

countably infinite / uncountablyinfinite numbersof levels below it in the DAG to which it

belongs?Might suchlevels be gainfully comparedto the conventionalcomputersciencetheory

issue of position in the Chomsky hierarchy?

viii) One might try to characterizethe unpredictability-of-the-futureresult of Thm. 2 is as the

physical computationanalogueof the following issuein Turing machinetheory:Canonecon-

structaTuringmachineM thatcantakeasinputA, anencodingof aTuringmachineandits tape,

andfor any suchA computewhatstateA’sTuringmachinewill bein afterwill bein aftern steps,

andperformthis computationin fewer thann steps?This characterizationsuggestsinvestigating

the formal parallels(if any) betweenthe resultsof thesepapersandthe “speed-up”theoremsof

computer science.

ix) More speculatively, thecloseformal connectionbetweentheresultsof this secondpaperand

thoseof computersciencetheorysuggestthat it may be possibleto find physical analoguesof

mostof theotherresultsof computersciencetheory, andtherebyconstructa full-blown “physical

computersciencetheory”. In particular, it maybepossibleto build a hierarchy of physicalcom-

putingpower, in analogyto theChomsky hierarchy. In this way we couldtranslatecomputersci-

ence theory into physics, and thereby render it physically meaningful.

We might be able to do at leastsomeof this even without relying on the DAG relationship

amongthephysicalcomputersin aparticularset.As anexample,wecouldconsiderasystemthat

can correctlypredictthefuturestateof theuniversefrom any currentstateof theuniverse,before
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thatfuturestateoccurs.Thebehavior of sucha systemis perfectlywell-defined,sincethelaws of

physics are fully deterministic(for quantummechanicsthis statementimplicitly presumesthat

oneviews thoselaws asregardingthe evolution of the wave function ratherthanof observables

determinedby non-unitarytransformationsof that wave function). Nonetheless,by the central

unpredictabilityresultof Thm. 2, we know that sucha systemlies too high in the hierarchy to

exist in more than one copy in our physical universe.

With sucha systemidentifiedwith anoracleof computersciencetheorywe have thedefini-

tion of a “physical” oracle.Canwe constructfurtheranalogueswith computersciencetheoryby

leveragingthat definition of a physical oracle?In other words, can we take the relationships

between(computerscience)oracles,Turing machines,andthe othermembersof the (computer

science)Chomsky hierarchy, andusethoserelationshipstogetherwith our (physical) oracleand

physical computers to gainfully define other members of a (physical) Chomsky hierarchy?

x) Canwe thengo furtheranddefinephysicalanaloguesof conceptslike P vs. NP, andthe like?

Might the halting probability constantΩ of algorithmicinformationtheoryhave an analoguein

physical computation theory?

As anotherexampleof possiblelinks betweenconventionalcomputersciencetheoryandthat

of physicalcomputers,is thereaphysicalcomputeranalogueof Berry’sparadox?Weaklypredict-

ing a partition is thephysical computationanalogueof “generatinga symbolsequence”in algo-

rithmic informationcomplexity. Thecoreof Berry’s paradoxis thattherearenumbersk suchthat

no Turing machinecangeneratea sequencehaving algorithmicinformationcomplexity k (with

respectto somepre-specifieduniversalTuring machineU). So for exampleoneclosely related

issuein physicalcomputationis to characterizethephysicalcomputersC1 andx ∈ ℜ suchthat∃

a computerC2 whereC1 >> C2 andwhere∀ partitionsπ, C2 weaklypredictswhetherc(π | C1) >

x (i.e., such that∃ x2 ∈ {x2} such that X2( ^u ) = x2 ⇒ Y2
p(

^u ) = (B, whetherc(π | C1) > x)).

xi) Concernsof computersciencetheory, andin particularof thetheoryof Turingmachines,have
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recentlybeenincorporatedinto agooddealof work on thefoundationsof physics(e.g.,[36, 37}).

Futurework involvesreplacingphysicalcomputersfor Turing machinesin this work, alongwith

replacing notions like prediction complexity for notions like algorithmic complexity.

xii) More generally, therehave beenmany candidatesproposedfor how oneshouldmeasure“the

complexity” of aphysicalsystem,e.g.,thermodynamicdepth[21], logicaldepth[5], andphysical

complexity [36, 37]. Futurework involveslimning therelationbetweenthesealternativesandpre-

diction complexity. Particularly intriguing in this regard is logical depth,which is explicitly con-

cernedwith “how muchmathematicalwork” is neededto performa computation,measuredin

numberof computationsteps.Predictioncomplexity is alsoconcernedwith suchwork, only mea-

suredspatiallyin termsof how muchinitialization precisionis requiredto performthecomputa-

tion.

xiii) Otherfuturework involvesinvestigatingotherpossibledefinitionsof complexity for physical

computation.Even sticking to analoguesof algorithmic information complexity, thesemight

extendsignificantlybeyondthemodificationsto thedefinitionof predictioncomplexity discussed

in thetext. For example,onemight try to definetheanalogueof abit sequence’s “length” in terms

of the numberof elementsin {y q}, ratherthanin termsof a volume.As anotheralternative one

might take the (inverse)complexity of a computationaldevice to be the numberof input-distin-

guishablecomputersthat can predict that device (working in somepre-specifiedinput-distin-

guishable set, presumably).

xiv) Thereareat leastseveralwaysthattheformal definitionof a reality presentedin Sec.4(i)can

bemodified.For example,onecouldconsiderrealitiesthatconsistof setsof multiple computers

togetherwith anunderlyinguniverse,ratherthanjustasinglesuchcomputer. Thiswouldbringall

the multiple computerunpredictabilityresults(e.g.,Thm. 2) directly into play within the funda-

mentallaws of physicsthemselves.(A numberof othertopicsrelatedto realitiesthat areworth
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investigating are presented in Sec. 4(i).)

xvi) Originally we restrictedattentionto intelligibility functionsthat are question-independent

becauseotherwiseno pair of computerscould be mutually intelligible (Thm. 1). However it

turnedout thatevenwith this restriction,no pair of computerscanbemutuallypredictable(Thm.

2). Accordingly, in Sections3 and4 attentionshiftedto godcomputers,which cancorrectlypre-

dict any computeroutsideof themselves,but arenot themselvespredictableto suchcomputers.

Given this shift though,Thm. 1 now doesnot provide a reasonto requirethat our intelligibility

functionsbe question-independent.Futurework involves re-analyzingthe issuesaddressedin

Sections3 and4 for full question-dependent intelligibility functions.Otherfuturework involves

re-analyzingthoseissuesfor changesin which of theconditions(i), (ii) and/or(iii) discussedin

the appendix are used to define weak and/or strong predictability.

FOOTNOTES

[1] To “remember”,in thepresent,aneventfrom thepast,formally means“predicting” thatevent

accurately(i.e., retrodictingtheevent),usingonly informationfrom thepresent.Suchretrodiction

reliescrucially on the secondlaw. Hence,the temporalasymmetryof thesecondlaw causesthe

temporalasymmetryof memory(werememberthepast,not thefuture).Thatasymmetryof mem-

ory in turn causesthetemporalasymmetryof thepsychologicalarrow of time. “Memory systems

theory” refersto the associatedphysicsof retrodiction;it is the thermodynamicanalysisof sys-

tems for transferring information from the past to the present. See [31].

[2] Moreprosaically, to motivateintelligibility wecansimplynotethatwewish to beableto pose

to a computerC1 any predictionquestionwe canformulate.In particular, this meanswe wish to

beableto poseto C1 any questionsconcerningwell-definedaspectsof thefuturestateof C2. Now
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considerhaving C2 beaconventionalcomputerbasedonanunderlyingphysicalsystem.Thenwe

wantto beableto predictC2’s outputat time τ asY2(uτ). Thereforein additionto any otherques-

tionswe might wantto beableto poseto it, we wantto beableto poseto C1 questionsinvolving

thevalueY2(uτ) (e.g.,is thatvalueequalto somex1? to somex1 or x2? to thatx1 or someother

x3? etc.).We wantC1 to “understand”y2 sufficiently well to beableto posebinary-valuedques-

tions concerning it. This is equivalent to requiring intelligibility.

[3] Especiallyfor non-binaryπ, many other definitionsof predictioncomplexity besidesDef.

11(ii) canbemotivated.For example,onecould reasonablydefinethecomplexity of π to be the

sumof thecomplexitiesof eachbinarypartitioninducedby anelementof π, i.e.,onecoulddefine

it asΣp∈π c({ ^u ∈ p, ^u ∉ p} | C). Anothervariant,onethatwould differ from theoneconsidered

in the text even for binary partitions,is minρ∈C-1(π) [Σx∈ρ l(x)]. For reasonsof space,no such

alternatives will be considered in this paper.

[4] Notethatthereis a lot of structurenotcapturedin thisdefinition.As anexample,two realities

can be computationallyequivalent even if they differ in their functions mappingX(
^
u ) →

[Yq(
^
u )](X -1(x1)), wherex1 is thefirst elementof {x} (sothat for neithercomputerdoesX-1(x1)

vary asthe
^
u argumentto [Yq(.)] is varied).Sucha differencebetweenthetwo realitiesis akin to

a difference in their responses to counter-factual questions.

APPENDIX: FORMAL DEFINITIONS AND PR OOFS

This appendixpresentsthe fully formal definitionsandproofsof the resultsdiscussedin the

text. We start with the following definition:

Definition 1:
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i) A (computation) partition is a pair, consistingof a non-emptysetof partition-elementlabels

and a single-valued mapping from
^
U into that set. Unless statedotherwise,the mapping is

assumed to be surjective onto the set.

ii) Any questionq ∈ Q is a partition,whosesetof partition-elementlabelsis A, with elementsα

∈ A calledanswersto that question.A(q) indicatesthe A-componentof the pair q. We restrict

attention to Q such∃ at least two elements in A(q) for at least one q∈ Q.

Note thatwe make no assumptionsconcerningthefinitenessof Q and/orany of the {A(q ∈ Q}.

Unlessindicatedotherwise(e.g.,in thedefinitionof questions),any partition is assumedto con-

tain at leasttwo elements.Note that the definition of a computerpartition differs from that of a

conventional set-theoretic partition in its inclusion of the partition-element labels.

Given these definitions, we can now define physical computers:

Definition 2: i) In anoutput partition Y, thespaceof partitionelementlabelsis aspaceof possi-

ble“outputs”,{y}, consistingof all pairs{y q ∈ Q, yα ∈ A(yq)}, for someQ andassociatedA(.) as

definedin Def. (1). Often, for convenience,we will write an outputpartition Y explicitly in the

form (Q, Y), whereY(.) is theoutputmap û ∈ ^
U → {y q ∈ Q, yα ∈ A(yq)}. Also, we will find it

useful to define an associated (prediction) partition, Yp(.) : û → (A(Yq( û ), Yα( û )).

ii) In an input partition , X, thespaceof partitionelementlabelsis a spaceof possible“inputs”,

{x} ≡ A(X).

iii)   A (physical) computer consists of the double of an input partition and an output partition

Sincewe arerestrictingattentionto non-emptyQ (cf. Def. 1),
�����

is non-empty. Thesurjec-

tivity usuallyassumedof X(.) andY(.) (cf. Def. 1) is a restrictionon {x} and{y}, respectively. In

thecaseof Y it reflectsthefactthatwewantthecomputerto beableto provideany of theallowed

answersto any questionit canpose.(This propertyis perhapsthemostimportantreasonwhy we

don’t definethe outputof a computersimply to be a region of
^
U, but ratherto be a question-
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answerpair thatdelineatessucharegion.)Moregenerally, for bothinputsandoutputs,for reasons

of conveniencewe don’t want to allow a value“officially” to be in the spaceof the computer’s

potentialinputs(outputs)if thereis no stateof thecomputerthat correspondsto that input (out-

put).For example,if thecomputeris a digital workstationwith a kilobyte of its RAM setasideas

input, it makesno senseto have theinput spacecontainmorethan(28)1024values,thenumberof

possiblebit patternsin thatRAM. For anexampleof whenY(.) neednot besurjective,seeDef. 7

below.

Example 1 continued: Restrictattentionto computers(X, Q, Y) whereall q ∈ Q concernthe

samemomentT. Thenyou geta differentphysicalcomputerif you changeany of thetimes0, T,

or τ (implicitly settingX(.(), all q(.) ∈ Q, and Y(.), respectively). In this sensethe electronic

workstationon your deskis actuallya setof many differentcomputers.All thosecomputersare

(typically) copiesof oneanotherhowever. This differencewith commonvernacularis important

to bear in mind in considering the results presented below.

We can now define a “copy” of a physical computer:

Definition 2 (iv): Givena computerC ≡ {X, Q, Y(.)}, definethe implication in {y} of any value

x ∈ {x} to bethesetof all y ∈ {y} consistentwith x, in that∃ ^u ∈ ^U for which bothX( ^u ) = x

and Y( ^u ) = y.

v) ThecomputerC2 ≡ {X 2, Q2, Y2(.)} is acopyof thecomputerC1 ≡ {X 1, Q1, Y1(.)} if f Q2 = Q1,

{x 2} = {x 1} ≡ {x}, andthe implication in {y 2} of any x ∈ {x} is thesameasthe implication in

{y 1} of that x.

As anexample,any computeris a copy of itself. More generally, if V is a bijectionover
^
U, then

{X(V(.)), Q(V), Y(V(.))} is a copy of {X(.), Q, Y(.)}, whereQ(V) ≡ {q(V(.)) : q ∈ Q}. Notethat

Q2 = Q1 meansthat {y 2} = {y 1}. An obvious generalizationof Def. 2(v) is to only requirethat
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therebea re-orderingof the individual q2 ∈ Q2 and/ora bijective transformationof someof the

A(q2 ∈ Q2) such that Q2 = Q1.

NotethatX1(.) maydiffer from X2(.) andthatY1(.) maydiffer from Y2(.) in thedefinitionof

acopy of acomputer;thetwo computersareallowedto havedifferentinputvaluesfor thesame^u,

andthey areallowedto have differentoutputvaluesfor thesame^u. (If this weren’t thecase,the

two computerswouldbeidentical.)Similarly, they canhavedifferent û for thesameoutputvalues

(and/orinputvalue).Accordingly, aparticularpartitioncanbeweaklypredictableto acomputerC

but not to acopy of C. (For example,thiscanoccurwhenthatpartitionis relatedto theoutputsec-

tion of C’s copy.)

It is possibleto generalizeDef. 2(v) so thatC1 andC2 do not concernthesame
^
U. Theonly

placein our definitionthat thesharingof
^
U arisesis in therequirementthatQ2 = Q1. To circum-

ventthatrequirement,givenany countablesetof partitions{ πi}, defineΠ({ πi}) astheunionover

all
^
u of thestrings(π1( ^u ), π2( ^u ), ...). (Since{ πi}is countable,sois Π({ πi}).) Thisunionis how

thepartitionscollectively divide up
^
U. Thenif we replacetherequirementthatQ2 = Q1 with the

requirement thatΠ(Q2) = Π(Q1), we arrive at our desired generalization.

If thereis additionalstructurein the two
^
U at hand,onecanrefinethis generalizationof the

definition of a copy. For example,if both
^
U are topologicalspacesthat arehomeomorphically

related,one can require that the transformationimplicit in establishingthat Π(Q1) = Π(Q2)

respects that homeomorphism.

Definition 3: ConsideraphysicalcomputerC ≡ (Q, X(.), Y(.)) anda ^U-partitionπ. A (notneces-

sarily surjective) partition mapping
^
U into B, f, is anintelligibility function  (for π) if

∀ û, û' ∈ ^
U, π( û ) =π( û' ) ⇒ f( û ) = f( û' ).

A set F of such intelligibility functions is anintelligibility set  for π.

We view any intelligibility functionasa questionby definingA(f) to betheimageof ^U under

f. If F is anintelligibility setfor π andF ⊆ Q, wesaythatπ is intelligible to C with respectto F. If

the intelligibility setis not specified,it is implicitly understoodto be the setof all intelligibility
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functions forπ.

We saythat two physicalcomputersC1 andC2 aremutually intelligible (with respectto the

pair (F1, F2)) if f bothY2 is intelligible to C1 with respectto F2 andY1 is intelligible to C2 with

respect to F1.

Pluggingin, π is intelligible to C iff ∀ intelligibility functionsf, ∃ q ∈ {y q} suchthatq = f, i.e.,

suchthatA(q) = theimageof ^U underf, andsuchthat∀ û ∈ ^
U, q( û ) = f( û ). Formally, by the

surjectivity of Y(.), demandingintelligibility implies that ∃ ^u' ∈ ^
U such that ∀ ^u ∈ ^

U,

[Yq(
^u' )]( ^u ) = f( ^u ). Notethatsinceπ containsat leasttwo elements,if π is intelligible to C, ∃

yq ∈ {y q} suchthatA(yq) = B, anyq suchthatA(yq) = {0}, andonesuchthatA(yq) = {1}. Usu-

ally we are interestedin the casewhereπ is an output partition of a physical computer, as in

mutual intelligibility.

In conventionalcomputationasin Ex. 1, X(.) specifiesthequestionq ∈ Q we wantto poseto

the computer. In suchscenarios,mutual intelligibility restrictshow much computationcan be

“hidden” in Y2(.) andX1(.) (Y1(.) andX2(.), respectively) by couplingthem,sothatsubsetsof the

rangeof Y2(.) are,directly, elementsin therangeof X1(.), without any interveningcomputational

processing.

We arenow in a positionto formally definewhat it meansfor a computerto make a predic-

tion. First considerthe following threeconditionsrelating a computerC, a partition π, and an

intelligibility set for π, F:

i) π is intelligible to C with respect to F, i.e., F⊆ {y q};

ii) ∀ f ∈ F, ∃ x ∈ {x} that weakly induces f, i.e., an x such that:

X(
^
u )  =  x

⇒

Yp( û )  =  (A(f), f( û ));

iii) ∀ f ∈ F, if thesetof x valuesweaklyinducingf is non-empty, thenthereis at leastoneof those

x for which it is further true that X(
^
u ) = x ⇒ Yq(

^u ) = f.
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Intuitively, condition(ii) meansthatfor all questionsq in F, thereis aninputstatesuchthatif C is

initialized to that input state,C’s answerto thatquestionq (asevaluatedat τ) mustbecorrect.If

(ii) and(iii) bothhold, thenwe cancombinethoseconditionsinto thesinglestatementthat∀ f ∈

F ∃ x ∈ {x} suchthatX(
^
u ) = x ⇒ Y( ^u ) = (f, f( ^u )), and(i) is superfluous.Intuitively, in such

asituation,for any questionin theintelligibility set,thereis alwaysaninput thatinducesthecom-

puter to ask and (correctly) answer that question.

Someof theunpredictabilityresultsdo not requirethatall threeconditionshold. In particular,

ourcentralresult,Thm.2, reliesonneither(i) nor (iii); in its strongestformulationit only invokes

condition(ii) (asthe proof of it presentedbelow makesclear).In contrast,existenceproofsare

strongestwhenwe imposeasmany conditionsaspossible.This raisestheissueof which of those

conditionswouldmostusefullybeincorporatedinto ourdefinitionof predictability. As acompro-

mise,herethe term “weak predictability” is interpretedto meanonly that conditions(i) and(ii)

necessarily hold:

Definition 4: Considera physicalcomputerC, partitionπ, andintelligibility setfor π, F. We say

that π is weakly predictable to C with respectto F iff F ⊆ {y q}, and∀ f ∈ F, ∃ x ∈ {x} that

weakly induces f.

As a formalmatter, notethatin thedefinitionof predictable,eventhoughf(.) is surjectiveonto

A(f) (cf. Def. 3), it maybethatfor somex, thesetof valuesf( ^u ) takesonwhen ^u is restrictedso

thatX( ^u ) = x donotcoverall of A(f). Thereadershouldalsobearin mind thatby surjectivity, ∀

x ∈ {x}, ∃ û ∈ ^U such that X(̂u ) = x.

We next define the property that two computers’ input functions are independent:

Definition 5: Considera setof n physicalcomputers{C i ≡ (Qi, X i(.), Yi(.)) : i = 1, ..., n}. We say

{C i} is (input) distinguishable if f ∀ n-tuples(x1 ∈ {x 1}, ..., xn ∈ {x n}), ∃ û ∈ ^
U suchthat∀ i,
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X i( û ) = xi simultaneously.

Wesaythat{C i} is pairwise (input) distinguishable if any pairof computersfrom {C i} is distin-

guishable,andwill sometimessaythat any two suchcomputersC1 andC2 “are distinguishable

from eachother”. We will alsosaythat {C i} is a maximal (pairwise)distinguishablesetif there

are no physical computers C∉ {C i} such that C∪ {C i} is a (pairwise) distinguishable set.

Our first resultdoesnot evenconcerntheaccuracy of prediction.It simply statesthat for any

pair of physical computerstherearealways binary-valuedquestionsaboutthe stateof the uni-

versethat cannotevenbeposedto at leastoneof thosephysical computers.In particular, this is

trueif thesecondcomputeris acopy of thefirst one,or evenif it is thesameasthefirst one.(The

resultdoesnot rely on input-distinguishabilityof thetwo computers— a propertythatobviously

doesnot describethe relationshipbetweena computerand itself.) This impossibility holds no

matterwhatthecardinalityof thesetof questionsthatcanbeposedto thecomputers(i.e.,nomat-

ter what the cardinalityof {x} and/orQ). It is alsotrue no matterhow powerful the computers

(andin particularholdsevenif thecomputersaremorepowerful thanaTuringMachine),whether

the computersare analogor digital, whetherthe universeis classicalor quantum-mechanical,

whetheror not thecomputersarequantumcomputers,andevenwhetherthecomputersaresubject

to physical constraintslike the speedof light. In addition the result doesnot rely on chaotic

dynamicsin any manner. All that is requiredis that the universecontaintwo (perhapsidentical,

perhaps wildly different) physical computers.

Theorem 1: Considerany pair of physicalcomputers{C i : i = 1, 2}. Either∃ finite intelligibility

setF2 for C2 suchthatC2 is not intelligible to C1 with respectto F2, and/or∃ finite intelligibility

set F1 for C1 such that C1 is not intelligible to C2 with respect to F1.

Proof: Hypothesizethatthetheoremis false.ThenC1 andC2 aremutuallyintelligible ∀ finite F1

andF2. Now the setof all finite F2 includesany andall intelligibility functionsfor C2, i.e., any
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andall functionstaking ^u to a bit whosevalueis setby thevalueY2( ^u ). Thesetof thosefunc-

tionscanbebijectively mappedto thepower set2{y 2} . SoF2 ⊆ Q1 ⇒ o(Q1) ≥ o(2{y 2} ). However

o({y2}) ≥ o(Q2), since{y 2} containsall possiblespecificationsof a q2 ∈ Q2. Thereforeo(Q1) ≥

o(2Q2
). But it is alwaystruethato(2A) > o(A) for any setA, whichmeansin particularthato(2Q2

)

> o(Q2). Accordingly, o(Q1) > o(Q2). Similarly though,o(Q2) > o(Q1). Thereforeo(Q1) > o(Q1),

which is impossible.QED.

Note that Thm. 1 doesn’t require that C1 and C2 be different computers.

Ultimately, Thm. 1 holds due to our requiring that our physical computerbe capableof

answeringmorethanonequestionaboutthe future stateof the universe.To satisfythis require-

mentq cannotbepre-fixed.(In conventionalcomputation,it is specifiedin thecomputer’s input.)

But preciselybecauseq is not fixed, for the computer’s outputof α to bemeaningfulit mustbe

accompaniedby specificationof q; thecomputer’soutputmustbeawell-definedregion in ^U. It is

thisneedto specifyq aswell asα in theoutput,ultimately, whichmeansthatonecannothave two

physicalcomputersbothcapableof beingaskedarbitraryquestionsconcerningtheoutputof the

other.

Thm.1 reflectsthefactthatwhile wedonotwantto haveC’soutputpartition“riggedaheadof

time” in favor of somesinglequestion,we alsocannotrequiretoo muchflexibility of our com-

puter. It is necessaryto balancethesetwo considerationsbeforeanalyzingpredictionof thefuture.

We do this with the formal property of question-independence.

Recall that for any f that is an intelligibility function of (the outputpartition of) somecom-

puterC, ∀ û, û' ∈ Û, Y( û ) = Y( û' ) impliesthatf( û ) = f( û' ). Sofor suchanf, thejoint condi-

tion [Yq( û ) = Yq( û' )] ^ [Yα( û ) = Yα( û' )] implies that f( û ) = f( û' ). We considerf ’s that

obey weaker conditions:

Definition 6: An intelligibility functionf for anoutputpartitionY(.) is question-independentif f

∀ û, û' ∈ Û:



57

Yp( û )  =  Yp( û' )

⇒

     f( û ) = f( û' ).

An intelligibility set as a whole is question-independent if all its elements are.

Wewrite C1 > C2 (or equivalentlyC2 < C1) andsaysimply thatC2 is (weakly) predictable to

C1 (or equivalently that C1 can predict C2) if Y2
p is weakly predictableto C1 for all question-

independentfinite intelligibility setsfor C2. Similarly, from now on we will saythatC2 is intelli-

gible to C1 without specificationof anintelligibility setif Y2
p is intelligible to C1 with respectto

all question-independent finite intelligibility sets for C2.

Intuitively, f is question-independentif its valuedoesnotvarywith q amongany setof q all of

which sharethe sameA(q). As an example,sayour physical computeris a conventionaldigital

workstation.Have a certainsectionof theworkstation’s RAM bedesignatedthe“output section”

of thatworkstation.Thatoutputsectionis furtherdividedinto a“questionsubsection”designating

(i.e., “containing”)aq, andan“answersubsection”designatinganα. Saythatfor all q thatcanbe

designatedby the questionsubsectionA(q) is a singlebit, i.e., we areonly interestedin binary-

valuedquestions.Thenfor a question-independentf, the valueof f canonly dependon whether

theanswersubsectioncontainsa 0 or a 1. It cannotvary with thecontentsof thequestionsubsec-

tion. In termsof the first of the motivationswe introducedfor requiringintelligibility , requiring

question-independentintelligibility meanswe only requireeachcomputer’s answer to bereadily

intelligible to the other one.We are willing to forego having the questionthat eachcomputer

thinks it’s answering also be readily intelligible to the other one.

As a formal example of question-independent intelligibility, say our computer has questions q

for which A(q) = B, questionsq for which A(q) = {0}, andq for which A(q) = {1}, but no others.

Thentherearefour distinctsubsetsof ^U, which mutuallycover ^U, definedby thefour equations

Yp(
^u ) = (B, 1), Yp(

^u ) = (B, 0), Yp(
^u ) = ({1}, 1), andYp(

^u ) = ({0}, 0). (Thefull partitionY(.)

is a refinementof this4-waypartition,whereasthis4-waypartitionneednothavenorelationwith

the partitionsmakingup eachq in Q.) So a question-independentintelligibility function of our
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computer is any B-valued function of which of these four subsets a particular^u falls into.

Thm.1 doesnothold if we restrictattentionto question-independentintelligibility sets.As an

example,both of our computerscould have their outputanswersubsectionsbe a singlebit, and

bothcouldhave their Q containall four Booleanquestionsaboutthestateof theothercomputer’s

outputanswerbit. (Thosearethefollowing functionsfrom ^u ∈ Û → B: Is u suchthat theother

computer’s outputbit is 1?0?1 and/or0?Neither1 nor 0?)SotheQ of bothcomputerscontains

all possible question-independent intelligibility sets for the other computer.

SoDef. 6 allows usto circumventThm.1. As analternative solution,we coulddefinea ques-

tion-free computer asapairof aninputpartitionandanoutputpartitionwhereeachoutputvalue

y only consistsof A(yq) andα (ratherthanyq, A(yq), andα). Workingwith suchcomputerswould

have thebenefitof simplifying theanalysis.Intelligibility in thesenseoriginally defined,applied

to a question-freecomputer, is exactly equivalentto applyingquestion-independentintelligibility

to a full (question-dependent)computer. Moreover many of theresultsof this paperstill hold for

question-free computers.

Theproblemwith this alternative approachis that thetwo partitionsX(.) andYp(.), by them-

selves,don’t really specifya “computer” in any sense.They don’t specifya meansof associating

answerswith questions.To addressthis without introducingYq, onemight adda mappingfrom

questionsto inputsto thedefinitionof a computer. However onceonedoesthis it is not clearthat

thisnew definitionof acomputeris any “simpler” thanouroriginalone.Thisapproachis notpur-

sued any further in this paper.

In general,we cannothave thex valueof our computerC alwaysuniquelyfix theassociated

yα (i.e.,cannothave thecasethat∀ x, ∃ yα suchthatX(
^
u ) = x ⇒ Yα(

^
u ) = yα). If it did, thenC

could not predictmostnon-trivial computersthat aredistinguishablefrom C. For example,say

that for a computerC2, ∀ y2
q ∈ {y 2

q}, A(y2
q) = {x 2}, andthatY2

α(
^
u ) = X2(

^
u ) ∀ ^

u. SoC2’s

outputsimply equalsits input. Thensincewhatever thechoiceof x all x2 valuesareallowed(by

distinguishability),it follows thatwhatever thechoiceof x, all y2
α valuesareallowed.Soappro-

priatechoiceof x cannotmake thevalueyα track(anintelligibility functionof) y2
α if thatchoice
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of x forces a unique value yα.

This is quitereasonable.If C1 is to predictC2 correctly, theinformationof whatC2 is calculat-

ing mustsomehow beconveyedinto C1. Dueto input-distinguishability, this canonly happenby

C1’s implicitly “observing” what questionC2 is answering(ratherthanby having x1 reflectx2).

Accordingly, for a fixed x1, C1 mustbe ableto generatedifferentpredictions,dependingon the

resultsof that “observing”. Hence,x1 cannotfix the valuey1
α. (On the otherhand,it is not so

unreasonableto demandthat the valueof x1 specifythe valuey1
q, i.e., demandthat it uniquely

fixes what question C1 is answering. See Coroll. 1 below.)

Thefollowing exampleestablishesthat therearepairsof input-distinguishablephysicalcom-

puters{C1, C2} in which C2 is predictableto C1, andin which the question componentof y1 is

uniquely fixed by x1:

Example 2: Q2 consistsof a single question,one which is a binary partition of ^U so that

A(Y2
q(

^u )) = B always.SinceY2(.) is surjective, theimageof ^U underY2
α(.) is all of B. Q1 has

four elementsgivenby thefour logical functionsof thebit Y2
α( ^u ). (Notethesearethefour intel-

ligibility functionsfor C2.) Have X1(.) = Y1
q(.), so that {x 1} containsfour elementscorrespond-

ing to thosefour possiblequestionsconcerningy2
α. Next, have Y1

α( ^u ) = [Y1
q(

^u )]( ^u ) ∀ ^u

∈ ^U. Thenfor any of thefour intelligibility functionsfor C2, q, ∃ x1 ∈ {x 1} suchthatX1( ^u ) = x1

⇒ [A(Y 1
q( û )) = A(q)] ^ [Y1

α( û ) = q( û )]; simply choosex1 = q, so that X1( ^u ) = x1 ⇒

Y1
q(

^u ) = q. Finally, to ensuredistinguishability, if therearemultiple x2 values,have eachone

occur for at least one^u in each of the subregions of ^U given by the partition X1(.).

Dueto question-independence,wedonotneedto specifyY2
q(.). If we like,wecouldsetit sothat

y2
q is uniquely fixed by the value of x2, just as is the case for C1.

To ensuresurjectivity of Y1(.), we could have X1(.) subdivide eachof the two sets(oneset for

eachvaluey2
α) { ^u ∈ ^U : Y2

α( ^u ) = y2
α} into four non-emptysubregions,onefor eachx1 value.

So (X1( ^u ), Y2
α( ^u )) are two-dimensionalcoordinatesof a setof disjoint regions that form a

rectangulararraycovering
^
U. This meansthat ^u → (X1( ^u ), Y2

α( ^u )) is surjective onto {x 1} ×
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{y 2
α}, so that for any y1

α andintelligibility functionof C2, q, thereis alwaysa valueof x1 that

both induces the correct prediction for that function q and is consistent with that y2
α.

The following variantof Ex. 2 establishesthat we could have yet anothercomputerC3 that

predicts C2 but that is also distinguishable from C1:

Example2': HaveQ3 = Q1, {x 3} = {x 1}, Y3
q(.) = X3(.), Y3

α( ^u ) = [Y3
q(

^u )]( ^u ) ∀ ^u ∈ ^U, and

haveX3(.) subdivideX1(.) sothatall four valuesof x3 canoccurwith eachvalueof x1. In general,

aswe vary over all ^u ∈ ^U andthereforeover all (x1, x3) pairs,thepair of intelligibility function

thatC1 is predictingwill separatelyvary from thosethatC3 is predicting,in suchaway thatall 24

pairs of intelligibility functions for C2 are answered correctly for some^u ∈ ^U.

In addition,wecanhaveacomputerC4, distinguishablefrom bothC1 andC2, whereC4 > C1,

sothatC4 > C1 > C2. We cando this eitherwith C4 > C2 or not,asthefollowing variantof Ex. 2

demonstrates:

Example 2": Have Y4
q(.) = X4(.), Y4

α( ^u ) = [Y4
q(

^u )]( ^u ) ∀ ^u ∈ ^U, and{x 4} = {y 4
q} equals

thesetof all 24 question-independentintelligibility functionsfor C1. (Therearefour possibley1
p:

{({0}, 0), ({1}, 1), (B, 0), (B, 1)}.) Ensuresurjectivity of Y4(.) by having eachregion of constant

Y4
q(

^u ) overlapeachregionof constantY1
p(

^u ).ThisestablishesthatC4 > C1. Distinguishability

would thenhold if X4(.) subdividesX1(.) sothatall 16 valuesof x4 canoccurwith eachvalueof

x1.

In thissetup,C2 mayor maynotbepredictableto C4. To seehow it maynotbe,considerthecase

where{x 2} is a singleelement(sodistinguishabilitywith C2 is never an issue).Have X4(.) bea

refinementof Y2
α(.), in thateachx4 valuecanonly occurwith oneor theotherof thetwo y2

α val-

ues.Soeachx4 valuedelineatesa “horizontalstrip” of constantY2
α( ^u ), runningacrossall four

values of X1( ^u ). (Since X1( ^u ) = Y1
q(

^u ), and Y1
α( ^u ) = (Y1

q(
^u ))( ^u ), Y1

α( ^u ) =
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(X1( ^u ))( ^u ), sospecifyingthevalueof X1( ^u ) specifiesY1
p(

^u ), andeachstrip crossesall four

y1
p values, as was stipulated above.)

Now choosethestrip with A(Y4
q(

^u )) = A(X4( ^u )) = {0} to have coordinateY2
α( ^u ) = 1, and

thestrip with A(Y4
q(

^u )) = {1} to have coordinateY2
α( ^u ) = 0. In theremainingfourteenstrips,

Y4
α( ^u ) is not constant,andthereforeis not a single-valuedintelligibility functionof theassoci-

ated(constant)valueof Y2
p(

^u ). In bothof thosetwo stripsthough,Y4
α( ^u ) is the oppositeof

Y2
α( ^u ). Sonox4 valueinducestheidentityquestion-independentintelligibility functionof C2: ^u

→ ΟUT2
α( ^u ), i.e., no x4 induces Y4p(

^u ) = (B, Y2
α( ^u )). Accordingly, C4 does not predict C2.

In otherinstancesthough,bothC2 andC1 arepredictableto C4. To have this we needonly subdi-

vide {x 4} and{y 4} into two portions,({x 4} A, {y 4} A), and({x 4} B, {y 4} B), whichdivide ^U in two.

Thefirst of theseportionsis usedfor predictionsconcerningC2, asin Ex. 2; eachregion of con-

stantX4( ^u ) is a subsetof a region of constantX1( ^u ) overlappingbothY2
α( ^u ). Thesecondis

usedfor predictionsconcerningC1, asjust above. It consistsof horizontalstripsextendingover

thatpartof ^U not takenupby theregionswith X4( ^u ) ∈ {x 4} A. So{x 4} A = {y 4
q} A containsfour

elements,and{x 4} B = {y 4
q} B containssixteen,which meansthat{x} = {y} containstwentyele-

ments,all told. Distinguishabilityis ensuredby having x4 takeonall its possiblevalueswithin any

subset of^U over which both X1(.) and X2(.) are constant.

We now present the proof of Thm. 2:

Proof of Thm. 2: Given Y1(.) and Y2(.), define the function f2( û ) by:

f2( û ) = 1 if A(Y1
q( û )) = {0};

f2( û ) = 0 if A(Y1
q( û )) = {1};

f2( û ) = NOT[Y1
α( û )] if A(Y 1

q( û )) =B; and

f2( û ) = 0 otherwise.

Intuitively, this functionis thenegationof Y1’sanswerwhenY1’squestionis containedin B. Now

A(f2) ∈ {{0}, {1}, B}, with its precisevaluedependingon y1. Sinceby constructionf2 doesnot
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varywith Y1
q( û ), only with A(Y1

q( û )), thismeansthatf2 is aquestion-independentintelligibil-

ity functionof Y1. Definef1 similarly, just with no negationoperation;f1( û ) = Y2
α( û ), when-

ever A(y2
q) ⊆ B, and equals 0 otherwise.

By hypothesis,∃ x2 suchthatX2( û ) = x2 ⇒ Y2
p( û ) = (A(f2), f2( û )). (Note that for that

x2, A(Y2
q( û )) ∈ {{0}, {1}, B}.) Similarly for x1 andf1. So by input distinguishability, ∃ sin-

gle û suchthatat thesametime,Y2
α( û ) = f2( û ) andY1

α( û ) = f1( û ). Pluggingin andusing

the fact that both A(Y2
q( û )) ∈ {{0}, {1}, B} and A(Y1

q( û )) ∈ {{0}, {1}, B}, we seethat

Y1
α( û ) = f1( û ) = Y2

α( û ) = f2( û ) = NOT[Y1
α( û )]. This contradictionestablishesour result.

QED.

Restatingit, Thm.2 saysthateither∃ finite question-independentintelligibility setfor C1, F1,

suchthatC1 is notpredictableto C2 with respectto F1, and/or∃ finite question-independentintel-

ligibility setfor C2, F2, suchthatC2 is notpredictableto C1 with respectto F2. Wecanweakenthe

definitionof “intelligibility” andstill establishtheimpossibilityof having bothC1 > C2 andC2 >

C1. For example,that impossibility will still obtaineven if neitherC1 nor C2 containsB-valued

questions,if they insteadcontainall possiblefunctionsmappingeachothers’valuesof yα onto{0,

1, 2} (or morepreciselycontainall suchfunctionsof yp — cf. thedefinitionof predictionparti-

tion). For pedagogical simplicity, such weakened definitions are not investigated here.

NotethatThm.2 still holdsif we considerlargerintelligibility setsthataresupersetsof F, the

setof all intelligibility functionsof Yp. In particular, considermodifying the definition of weak

predictability to involve F', the set of all intelligibility functionsof the partition
^
u → (X(

^
u ),

Yp(
^
u )). Intuitively, this is the set of all (question-independent)intelligibility functionsof the

entirecomputer(X, Y), not just of its outputpartition. (So “prediction” now means,in essence,

predictingall aspectsof C.) ThensinceF ⊆ F', Thm.2 still applieswith this alternative definition

of weak predictability.�

As mentionedpreviously, Thm.2 doesnot rely on intelligibility . This reflectsour restrictionto

question-independentintelligibility functions.Suchfunctionscannot“see” what the contentsof
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some(computer-to-be-predicted’s) yq are.Similarly, condition(ii) doesnot careaboutthe con-

tentsof any (predictingcomputer’s) yq. So thecontentsof yq in eithera predictingor being-pre-

dictedcomputerare,for themostpart,irrelevant.Accordingly, restrictionson thosecontentshave

few effectsconcerningcomputerspredictingeachotherusingquestion-independentintelligibility

sets.

Nonetheless,Thm. 2 canbeusedto derive anuncomputabilityresultthatdoesrely on mutu-

ally intelligibility . To seethis,defineacomputerC to be(Yq) stable if ∀ q ∈ {y q}, thereis always

anassociatedinput that forcestheoutputquestionto equalq, i.e., if ∃ x suchthatX(
^
u ) = x ⇒

Yq(
^
u ) = q. (Notethatgivenany y, stabilitycanalwaysbeassuredby choosingasufficiently fine-

grainedX(.).) In addition,definea computerto be infallible if its associatedanswersarealways

correctresponsesto its associatedquestions,i.e., if Yα(
^
u ) = [Yq(

^
u )](

^
u ) ∀ ^

u. (As anexample,

givenany partitionπ, thecomputerwhichhasasinglequestiongivenby q( ^u ) = π(
^
u ) andwhich

has Yα( ^u ) =π( ^u ) is infallible.) Then we have the following:

Corollary 1: Let C1 andC2 betwo distinguishablemutuallyintelligible computers,bothof which

are stable. It is not possible that both C1 and C2 are infallible.

Proof: Let F2 be the setof all questions-independentintelligibility functionsfor C2. ThenF2 ⊆

{y 1
q}, by mutualintelligibility . By stability of Y1, this meansthat∀ f ∈ F2, ∃ x ∈ {x 1} suchthat

X1(
^
u ) = x ⇒ Y1

q(
^
u ) = f. If C1 were infallible, this would thenmeanthat Y1

p(
^
u ) = (A(f),

f(
^
u )). Sox weakly inducesf, andmoregenerally, C1 > C2. Similarly, C2 > C1. If we now apply

Thm. 2 we get the result claimed.QED.

Similarly, onecanproducecorollariesof theresultspresentedbelow by, in essence,replacingpre-

dictability with infallibility . For reasonsof space,thosecorollariesarenot presentedhere.Note

that for any stable,infallible computerC, if C' is intelligible to C, thenall threeconditions(i-iii)

considered for defining weak predictability hold.
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As anaside,thereareseveralwaysonecangeneralizetheforegoingto thecaseof stochastic

scenarios.Onestartsby defininga probabilistic partition R asa spaceof partition labelsA(R)

andanassociateddistribution PR(r ∈ A(R) | ^u ). (Thesituationconsideredheretoforeis thespe-

cial casewhereall partitionsaredeltafunctions.)In particular, anoutputprobabilisticpartitionY

is onewhere{A(y)} is thesetof all pairs{q ∈ {y q}, α ∈ A(q)} for somesetof probabilisticpar-

titions {y q}. An exampleis a workstationwhoseoutputanswerα is thespecificationof oneof a

setof candidateGaussiandistributionsconcerningthe externalworld, i.e., a GaussianP( ^u | α).

Given alsoa prior distribution P(α), we canexpressthat workstation’s outputasa probabilistic

questionP(α | ^u) togetherwith a particularassociatedanswer. Anotherexampleis where ^u is a

wavefunction,andaprobabilisticpartitiongivestheresultsof aHermitianoperatorappliedto that

wavefunction.

For simplicity assumethatthefull joint distributionover ^U andall partitionlabelsis specified,

andthatP( ^u ) is nowhere-zeroover its domainof definition.Now any actualphysicalcomputer’s

stateis specifiedin ^u for aclassicaluniverse,andthesameis truein thequantumcaseassuming^u

is an eigenstateof the operatorof a humanobservingthe computer’s output.Accordingly, the

input and output probabilistic partitions of a probabilistic computer(i.e., P(x ∈ {x} | ^u) and

P(y ∈ {y} | ^u), respectively) aredeltafunctions,althoughthe partition Yq is not onein general.

Two probabilisticcomputersC1 andC2 are(input) probabilistic distinguishable if ∀ x1 ∈ {x 1}

and x2 ∈ {x 2}, ∃ ^u such that P(^u ) ≠ 0, P(x1 | ^u) ≠ 0, and P(x2 | ^u) ≠ 0.

As before,an intelligibility function is a “translation”mappinga partition’s possibleoutputs

into B. Formally, a probabilistic intelligibility function Φ of a (probabilistic)partition R with

labelsr is a probabilisticpartitionhaving A(Φ) ⊆ B where∃ a single-valuedfunctionh: R → B

suchthatP(φ ∈ A(Φ) | ^u) = ∫d ^u δ(φ, h(r)) P(r | ^u). (A question-independentprobabilisticintelli-

gibility function of an output partition Y simply hash(y) dependonly on yp.) We define the

degree of weak predictability of a probabilisticpartitionR to a probabilisticcomputerC for an
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intelligibility set F as

Intuitively, this is the minimax probability of C’s answer (b) agreeing withΦ’s answer (φ).

Note thatεR:C = 1 implies thatφ = b ∀ ^u suchthatP( ^u | x) is non-zero(for themaximizing

x). Now sinceoutputpartitionsaredeltafunctions,if R is theoutputpartitionof a computerC',

thenall Φ ⊆ F aredeltafunctions.In otherwords,thoseintelligibility functionsaresingle-valued

functionsfrom
^
U to B (asalwaysarethepartitionsX andY). Accordingly, having φ necessarily

equalb reducesto theconventional(non-probabilistic)definitionof weakpredictability, andThm.

2 applies.This provesthatit is impossibleto have two distinguishableprobabilisticcomputersC1

and C2 such thatεC1:C2 = εC2:C1 = 1.

Returningto the caseof non-probabilisticpartitions,we now presenta result that is often

handyin working with systemsmeetingour definitionof weakpredictability(i.e., conditions(i)

and(ii)). First notethatfor any partitionπ containingat leasttwo elements,thereexistsanintelli-

gibility functionf for π with A(f) = B, anintelligibility functionf with A(f) = {1}, andanintelli-

gibility function f with A(f) = {0}. By exploiting the surjectivity of output partitions,we can

extendthis resultto concernsuchpartitions.This is formally establishedin thefollowing lemma,

which holds whether or not we assume partitions are binary:

Lemma 1: ConsideraphysicalcomputerC1. If ∃ any outputpartitionY2 thatis intelligible to C1,

then∃ q1 ∈ Q1 suchthat A(q1) = B, a q1 ∈ Q1 suchthat A(q1) = {0}, anda q1 ∈ Q1 suchthat

A(q1) = {1}.

Proof: Since{y 2} is non-empty, {y 2
q} is non-empty. Pick someq* ∈ {y 2

q} having at leasttwo

elements.(By definitionof physicalcomputer, thereis at leastonesuchq* .) Constructany binary-

valuedfunctionf*2 of α ∈ A(q*) suchthat thereexistsat leastoneα for which f*2(α) = 0 andat

εR:C minΦ F∈ maxIN dû PIN û IN( ) δ φ b,( ) PΦ φ û( ) POUT OUT p= A f( ) b,( ) û( )φ b,∑ .∫=
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least one for which f*2(α) = 1. Define an associatedfunction f*2( û ) = f*2(Y2
α( û )) if A

(Y2
q( û )) = A(q*), 0 otherwise.By the surjectivity of Y2(.), ∀ α ∈ A(q*), ∃ û suchthat both

Y2
q( û ) = q* andY2

α( û ) = α. Therefore∃ û suchthatf*2( û ) = 1, and∃ û suchthatf*2( û ) = 0.

Thisestablishes,by construction,thatthereis aquestion-independentintelligibility functionof C2

thattakesonboththevalue1 andthevalue0, f*2. Soby ourhypothesisthatC2 is intelligible to C1

with respectto any question-independentintelligibility function of C2, we know that f*2 ∈ Q1.

Moreover, viewedasaquestion,A(f *2) = B. So,wehaveestablishedthatQ1 containsabinaryval-

ued function.

Next, note that the function̂u ∈ Û → 1 is alwaysa question-independentintelligibility function

of C2, asis the function û ∈ Û → 0. Again usingsurjectivity, we seethatA for thesetwo func-

tions are {1} and {0}, respectively. QED.

We now present proofs of some other results presented in the main text.

Proof of Coroll. 2: Hypothesizethat the corollary is wrong.Definethe compositedevice C* ≡

(ΙΝ∗(.) ≡ Πi=1
n-1 X i(.), Q1, Y1(.)). Since{C i} is fully distinguishable,X*(.) is surjective.Therefore

C*  is a physical computer.

Sinceby hypothesisCn is intelligible to Cn-1, ∃ yn-1
q suchthatA(yn-1

q) = B. Also, sinceCn-2

> Cn-1, ∃ xn-2 ∈ {x n-2} suchthat ∀ ^u ∈ ^U for which A(Yn-1
q(

^u )) = B, Xn-2( ^u ) = xn-2 ⇒

yn-2
α( ^u ) = Yn-1

α( ^u ). Iteratingandexploiting full distinguishability, ∃ (x1, ..., xn-2) suchthat

∀ ^u ∈ ^U for whichA(Yn-1
q(

^u )) = B, (X1( ^u ), .., Xn-2( ^u )) = (x1, ..., xn-2) ⇒ Y*( ^u ) = Y1( ^u ) =

Yn-1( ^u ). Thesameholdswhenwe restrict ^u sothatthespaceA(Yn-1
q(

^u )) = {1}, andwhenwe

restrict ^u so that A(Yn-1
q(

^u )) = {0}.

Sinceby hypothesisCn is intelligible to Cn-1, andsinceX*(.) is surjective, this resultmeans

thatCn is predictableto C* . Conversely, sinceCn > C1 by hypothesis,theoutputpartitionof C* is

predictableto Cn, andthereforeC* is. Finally, since{C i} is fully distinguishable,C* andCn are

distinguishable.ThereforeThm. 2 applies,andby usingour hypothesiswe arrive at a contradic-
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tion. QED.

Proof of Thm. 3: Assumeour corollary is wrong,andsomecomputerC is predictableto itself.

Sinceby definition predictability implies intelligibility , we canapply Lemma1 to establishthat

thereis a q ∈ {y q}, q', suchthat A(q') = B. Thereforeone question-independentintelligibility

functionof C is thefunctionf from ^u ∈ ^U → B thatequals1 if A(Yq(
^u )) = B andYα( ^u ) = 0,

andequals0 otherwise.Thereforeby hypothesis∃ x ∈ {x} suchthatX( ^u ) = x ⇒ A(Yq(
^u )) = B

andYα( ^u ) = f( ^u ). But if {A(Y q(
^u ))} = B, thenf( ^u ) = NOT[Yα( ^u )], by definition of f(.).

SinceX is surjective, this meansthat thereis at leastone ^u ∈ ^U suchthat {A(Y q(
^u ))} = B and

Yα( ^u ) = NOT[Yα( ^u )]. This is impossible.QED.

For analyzing god computers the following definition is useful:

Definition 7: Considerapairwisedistinguishableset{C i} with godcomputerC1. Definethepar-

titions Yi×j ( ^u ∈ ^U ) ≡ (Y q
i×j ( ^u ), Y α

i×j ( ^u )), whereeachanswermapY α
i×j ( ^u ) ≡ (Y1

α( ^u ),

Y2
α( ^u )), andeachquestion[Y q

i×j ( ^u )] ≡ the mappinggiven by ^u' ∈ ^U → ([Y1
q(

^u )]( ^u' ),

[Y2
q(

^u )]( ^u' )). Then C1 is omniscient if Y2×3×... is weakly predictable to C1.

Intuitively, Yi×j is just the doublepartition (Yi(.), Y j(.)) = ((Yi
q(.), Yi

α(.)), (Y j
q(.), Y j

α(.)), re-

expressedto bein termsof asinglequestion-valuedpartitionandasingleanswer-valuedpartition.

To motivatethis re-expression,for any two questionsqi ∈ Qi andqj ∈ Qj, let qi × qj betheordered

productof the partitionsqi and qj; it is the partition assigningto every point ^u' ∈ ^U the label

(qi( ^u' ), qj( ^u' )). Thenif Yi
q(

^u ) is thequestionqi andY j
q(

^u ) is thequestionqj, Y i×j
q ( ^u ) is the

questionqi × qj. Y i×j
α is definedsimilarly, only with one fewer levels of “indirection”, since

answercomponentsof output partitionsare not themselves partitions(unlike questioncompo-

nents).Note that even thoughany Yi(.) andY j(.) areboth surjective mappings,Yi×j neednot be

surjective onto the set of quadruples {qi ∈ Qi, qj ∈ Qj, αi ∈ A(Qi), αj ∈ A(Qj)}.
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Corollary 3: Considerthreepair-wise distinguishablecomputersC1, C2, C3, where /∃ q3 ∈ Q3

suchthatA(q3) |⊆ B. AssumethatC1 is anomniscientcomputer, andthatC1 is intelligible to C3.

Finally, assumefurther that not only thatC3’s outputcanbeany of its possiblequestion-answer

pairs,but alsothat for any of its questions,for any of the associatedpossibleanswers,thereare

situationswherethatansweris correct(so thatC2 shouldleave C3’s answeralonein thosesitua-

tions).(Formally, this meansthat∀ pairs(q3 ∈ Q3, α3 ∈ A(q3)), ∃ û ∈ Û suchthatbothY3
q( û )

= q3 andq3( û ) = α3, i.e., [Y3
q(

^u )]( ^u ) = α3.) Thenit is not possiblethat∀ û ∈ Û, Y2
α( ^u ) =

1 if [Y3
q(

^u )]( ^u ) = Y3
α( ^u ), 0 otherwise.

Proof: Hypothesizethat the corollary is wrong. Constructa compositedevice C2-3, startingby

having X2-3(.) ≡ Y3
q(.), Q2-3 = Q3 andY2-3

q(.) = Y3
q(.). Next definethe questionθ by the rule

θ( ^u ) ≡ NOT[Y3
α( ^u )] if Y2

α( ^u ) = 0, θ( ^u ) ≡ Y3
α( ^u ) otherwise.(N.b. no assumptionis made

that θ ∈ Q2-3.) To completethe definition of the compositecomputerC2-3, have Y2-3
α( ^u ) =

θ( ^u ).

Now by our hypothesis,∀ ^u ∈ ^U, θ( ^u ) = [Y3
q(

^u )]( ^u ). By thelastof theconditionsspeci-

fied in the corollary, this meansthat ∀ (q2-3 ∈ Q2-3, α2-3 ∈ A(q2-3)), ∃ ^u suchthat Y2-3
q(

^u ) =

q2-3 andY2-3
α( ^u ) = α2-3. So C2-3 allows all possiblevaluesof {y 2-3}, asa physical computer

must.Dueto surjectivity of Y3
q, it alsoallowsall possiblevaluesof thespace{x 2-3}. To complete

the proof that C2-3 is a (surjective) physical computer, we must establishthat Y2-3
α( ^u ) ∈

A(Y2-3
q(

^u )) ∀ ^u ∈ ^U. To do this notethat if for exampleA(Y2-3
q(

^u )) = A(Y3
q(

^u )) = {1},

thensinceit is alwaysthecasethattheY2-3
α( ^u ) = [Y2-3

q(
^u )]( ^u ) = [Y3

q(
^u )]( ^u ), Y2-3

α( ^u )

= 1. Similarly Y2-3
α( ^u ) ∈ A(Y2-3

q(
^u )) whenA(Y2-3

q(
^u )) = {0}. Finally, if A(Y2-3

q(
^u )) = B,

then the simple fact that Y2-3
α( ^u ) ∈ B always means that Y2-3

α( ^u ) ∈ A(Y2-3
q(

^u )).

SinceC1 is intelligible to C3 andQ2-3 = Q3, C1 is intelligible to C2-3. Moreover, given any

questionq2-3 ∈ Q2-3, ∃ associatedx2-3 ∈ {x 2-3} suchthat ∀ ^u ∈ ^U for which X2-3( ^u ) = x2-3,

Y2-3( ^u ) = q2-3. But aswasjust shown, Y2-3
α( ^u ) = q2-3( ^u ) for that ^u. ThereforeC1 is predict-
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able to C2-3.

Next, sinceC1 is omniscient,Y2×3 is intelligible to C1. Thereforeany binary functionof the

regionsdefinedby quadruples(A(Y2
q(

^u )), A(Y3
q(

^u )), Y2
α( ^u ), Y3

α( ^u )) is anelementof Q1.

Any single suchregion is wholly containedin one region definedby the pair (A(Y2-3
q(

^u )),

Y2-3
α( ^u )) though.Thereforeany binary functionof the regionsdefinedby suchpairsis anele-

mentof Q1. ThereforeC2-3 is intelligible to Q1. Similarly, thevalueof any suchbinary function

mustbegivenby Y1
α( ^u ) whenever X1( ^u ) equalssomeassociatedx1. SoC2-3 is predictableto

C1.

Finally, sinceC1 andC3 areinput-distinguishable,so areC1 andC2-3, andthereforeThm. 2

applies. This establishes that our hypothesis results in a contradiction.QED.

Similarly, wecannotarrangeto have two computersbe“anti-predictable”to oneanother. This

is mentioned in the main text as Coroll. 4 of Thm. 2. The proof of this result is as follows:

Proof of Coroll. 4: By assumptionC1 andC2 aremutuallyintelligible. Sowhatwemustestablish

is whetherfor bothof them,for all intelligibility functionsconcerningtheotherone,thereexists

an appropriate value of xi such that that intelligibility function is incorrectly predicted.

Hypothesizethatthecorollaryis wrong.Then∀ question-independentintelligibility functions

for C1, f1, ∃ x2 ∈ {x 2} such that X2( ^u ) = x2 implies that [A(Y 2
q( û )) = NOT[A(f 1)]] ^

[Y2
α( û ) = NOT[f1( û )]]. However by definition of question-independentintelligibility func-

tions,givenany suchf1, theremustbeanotherquestion-independentintelligibility functionof C1,

f3, definedby f3(.) ≡ NOT(f1(.)). Therefore∃ x2 ∈ {x 2} such that X2( ^u ) = x2 implies that

[A(Y 2
q( û )) = A(f3)]  ^  [Y2

α( û ) = f3( û )].

This NOT(.) transformationbijectively mapsthesetof all question-independentintelligibility

functionsfor C2 onto itself. Sincethatsetis finite, this meansthat the imageof thesetunderthe

NOT(.) transformationis thesetitself. Thereforeour hypothesismeansthatall question-indepen-

dent functionsfor C1 canbe predictedcorrectlyby C2 for appropriatechoiceof x2 ∈ {x 2}. By



70

similar reasoning,weseethatC1 canalwayspredictC2 correctly. SinceC1 andC2 aredistinguish-

able, we can now apply Thm. 2 and arrive at a contradiction.QED.

Recallthat therearethreeconditionsrelatedto weakpredictability, andfor pedagogicalsim-

plicity we settledon two for our formal definition of the term (cf. discussionprecedingDef. 4).

The situationwith strongpredictability is closelyanalogous.Its formal definition involving two

conditions is as follows:

Definition 8: Considera pair of physical computersC1 andC2. We saythatC2 is strongly pre-

dictable to C1 (or equivalentlythatC1 can strongly predict C2), andwrite C1 >> C2 (or equiva-

lently C2 << C1) iff:

i) C2 is intelligible to C1;

ii) ∀ question-independent intelligibility functions for C2, q1, ∀ x2 ∈ {x2},

∃ x1 ∈ {x 1} that strongly induces the pair (q1, x2), i.e., such that:

X1(
^
u ) =  x1

⇒

    [Y1
p( û ) = (A(q1), q1( û ))]   ^  [X2( ^u ) = x2].

We now presentthe proofsof someof the fundamentaltheoremsconcerningstrongpredict-

ability:

Proof of Thm. 5: To prove (i), let f beany question-independentintelligibility functionof π. By

Lemma1, theeverywhere0-valuedquestion-independentintelligibility functionof π is contained

in Q1, andsinceC1 > C2, theremustbeanx1 suchthatX1( û ) = x1 ⇒ Y1
α( û ) = 0. Thesameis

true for the everywhere1-valuedfunction.Thereforeto prove the claim we needonly establish

thatfor everyquestion-independentintelligibility functionof π, f, for whichA(f) = B, f ∈ Q1, and

thereexistsanx1 suchthatX1( û ) = x1 ⇒ Y1
α( û ) = f( û ). Restrictattentionto suchf from now
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on.

Definea question-independentintelligibility functionof C2, I2, suchthatA(I2) = B, andsuch

that for all û for which A(Yq( û )) = B, I2( û ) = Y2
α( û ). (Note that sinceC2 > π, thereboth

exist û for which Y2
p( û ) = (B, 1) and û suchthatY2

p( û ) = (B, 0.) Now by hypothesis,for any

of thef weareconsidering,∃ x2
f ∈ {x 2} suchthatX2( û ) = x2

f ⇒ Y2
p( û ) = (B, f( û )). However

the fact that C1 >> C2 ⇒ ∃ x1 ∈ {x 1} suchthat X1( û ) = x1 ⇒ X2( û ) = x2
f and suchthat

Y1
p( û ) = (A(I2), I2( û )) = (B, I2( û )). SinceX2( û ) = x2

f for sucha û, A(Y2
α( û )) = B, and

thereforeI2( û ) = Y2
α( û ). SoY2

p( û ) for sucha û equals(B, Y2
α( ^u )). Sofor thatx1, Y1

p( û )

= (A(f), f( û )).

This establishes(i). The proof for (ii) goessimilarly, with the redefinitionthat x1
f fixes the

value of x3 as well as ensuring that Y2
p( û ) = (A(f), f( û )). QED.

Proof of Thm. 6: Chooseany x2. For any question-independentintelligibility functionof y2
p, f,

theremustexist anx1
f ∈ {x 1} thatstronglyinducesx2 andf, sinceC1 >> C2. Labelany suchx1 as

x1
f (x2 beingimplicitly fixed).Sofor any suchf, { ^u : X1( ^u ) = x1

f} ⊆ { ^u : X2( ^u ) = x2}. How-

ever since{y 2
p} is not empty, thereareat leasttwo question-independentintelligibility functions

of y2
p, f1 andf2, whereA(f1) ≠ A(f2) (cf. Lemma1). Moreover, the intersection{ ^u : X1( ^u ) =

x1
f1

} ∩ { ^u : X1( ^u ) = x1
f2

} = ∅, sincethesetwo setsinducedifferentA(y1
q) (namelyA(f1) and

A(f2), respectively). This meansthat{ ^u : X1( ^u ) = x1
f1

} ⊂ { ^u : X2( ^u ) = x2}. On theother

hand,for thesamereasons,theremustalsoexist anx2 thatstronglyinducesx1
f1

. Therefore∃ x2'

suchthat{ ^u : X2( ^u ) = x2'} ⊂ { ^u : X1( ^u ) = x1
f1

}. So{ ^u : X2( ^u ) = x2'} ⊂ { ^u : X2( ^u ) =

x2}. This is not compatible with the fact that X2(.) is a partition.QED.

The following theorems involve physical computation analogues of TM theory.

Theorem 4: Given a set of physical computers {Ci}, /∃ C1 ∈ {C i} such that∀ C2 ∈ {C i},

i) C2 is intelligible to C1;
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ii) ∀ q2 ∈ Q2, ∃ x1 ∈ {x1} such that X1( ^u ) = x1 ⇒ Y1
α( ^u ) = 1 iff q2( ^u ) =

  Y2
α( ^u ).

Proof: ChooseC2 suchthatY2(.) = Y1(.). (If needbe,to do this simply chooseC2 = C1.) Thenin

particular, Y1
α(.) = Y2

α(.). Now sinceC2 is intelligible to C1 by hypothesis,by Lemma1 ∃ q1 ∈

Q1 suchthatA(q1) = {0}, andtherefore∃ q2 ∈ Q2 suchthatA(q2) = {0}. For thatq2, Y1
α( ^u ) = 1

iff 0 = Y1
α( ^u ), which is impossible.QED.

We now present definitions needed to analyze prediction complexity.

Definition 10: For any physical computer C with input space {x}:

i) Givenany partitionπ, a (weak) prediction input set (of C, for π) is any sets ⊆ {x} such

that both every intelligibility function of π is weakly inducedby an elementof s, and for any

propersubsetof sat leastonesuchfunctionis notweaklyinduced.Wewrite thespaceof all weak

prediction input sets of C forπ as C-1(π).

ii) Givenany otherphysical computerC' with input space{x'} for which thesetof all ques-

tion-independentintelligibility functionsis {f'}, a (strong) prediction input setof C, for thetri-

ple C', Ξ' ⊆ {x'}, and f ' ⊆ {f'}, is any sets ⊆ {x} suchthat both every pair (f' ∈ f ', x' ∈ Ξ') is

strongly inducedby a memberof s, andfor any propersubsetof s at leastonesuchpair is not

stronglyinduced.Wewrite thespaceof all strongpredictioninput sets(of C, for C', Ξ', andf ') as

C-1(C', Ξ', f ').

Definition 11: Given a physical computer C and a measure dµ over ^U:

i) DefineV(Ξ ⊆ {x}) asthemeasureof thesetof all ^u ∈ ^U suchthatX( ^u ) ∈ Ξ, anddefinethe

length of Ξ (with respect to X(.)) asl(Ξ) ≡  -ln[V(Ξ)];

ii) Given a partition π that is predictableto a physical computerC, definethe prediction com-

plexity of π (with respect to C),c(π | C), as minρ ∈ C-1(π) [l(ρ)].
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Proof of Thm. 7: Given any intelligibility function f for π, consider any x2
f ∈ {x2} that weakly

induces f, i.e., such that X2( ^u ) = x2
f ⇒ Y2

p( ^u ) = (A(f), f( ^u )). (The analysis will not be

affected if π is an output partition and we restrict attention to those intelligibility functions for π

that are question-independent.) Since C1 >> C2, we can then choose an x1, X1
f(x

2
f), to strongly

induce x2
f together with any question-independent intelligibility function of y2

p. (Indeed, in gen-

eral there can be more than one such value of x1 that induces x2
f.) So in particular, we can choose

it so that the vector Y1
p( ^u ) = (A(I2

A(f)), I2
A(f)(

^u )) for any possible function I2
A(f). Now for that

x1, X2( û ) = x2
f, and therefore A(Y2

q( û )) = A(f), which means that I2
A(f)( û ) = Y2

α( û ), which

in turn equals f( û ) for that x2. So ∀ û such that X1( û ) = X1
f(x

2
f), Y1

p( û ) = (A(f), f( û )). In

other words, X1
f(x

2
f) weakly induces in C1 the same intelligibility function of π that x2

f weakly

induces in C2. However since X1( ^u ) = X1
f(x

2
f) ⇒ X2

f(
^u ) = x2

f, the set of ^u ∈ ^U such that

X1( ^u ) = X1
f(x

2
f) is ⊆ the set such that X2( ^u ) = x2

f. This means that l(X1
f(x

2
f)) ≥ l(x2

f). (Our

task, loosely speaking, is to bound this difference in lengths, and then to extend the analysis to

simultaneously consider all such question-independent intelligibility functions f.)

Take {fi} to be the set of all intelligibility functions for π. By the preceding construction, π is

weakly predictable to C1 with a (not necessarily proper) subset of {X1
fi(x

2
fi
)} being a member of

(C1)
-1

(π). Now any member of (C1)
-1

(π) must contain at least three disjoint elements, correspond-

ing to intelligibility functions q with A(Y1
q( ^u )) = B, {0}, or {1}. (See the discussion just before

Lemma 1.) Accordingly, the volume (as measured by dµ) of any subset of {X1
fi(x

2
fi
)} ∈ (C1)

-1
(π)

must be at least 3 times the volume of the element of {X1
fi(x

2
fi
)} having the smallest volume. In

other words, the length of any subset of {X1
fi(x

2
fi
)} ∈ (C1)

-1
(π) must be at most -ln(3) plus the

length of the longest element of {X1
fi(x

2
fi
)}. Therefore c(π | C1) ≤ maxfi [l(X

1
fi(x

2
fi
))] - ln(3).

Now take {x2
fi} to be the set in (C2)

-1
(π) with minimal length. {x2

fi
} has at most o(2π) disjoint

elements, one for each intelligibility function of π. Using the relation mini[gi] = -maxi [-gi], this

means that c(π | C2) ≥ -ln[o(2π)] + minfi [l(x2
fi)]. Therefore we can write c(π | C1) - c(π | C2) ≤

ln[o(2π)] - ln(3) + maxfi [l(X1
fi(x

2
fi))] - minfi [l(x2

fi)]. The fact that for all x2
fi, X2( ^u ) = x2

fi
⇒
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A(Y2
q(

^u )) = A(fi) ⊆ B completes the proof of (i).

To prove(ii), notethatwecanalwaysconstructoneof thesetsin (C1)
-1

(π) by startingwith the

setconsistingof theelementof {X 1
fi(x

2
fi
)} having theshortestlength,andthensuccessively add-

ing otherx1 valuesto thatset,until wegeta full (weak)predictionset.Thereforec(π | C1) ≤ minfi

l(X1
fi(x

2
fi
)). Using this bound rather than the one involving -ln(3) establishes (ii).QED.

Note that thesetof Z ∈ B suchthat [C2]-1(Z) existsmustbenon-empty, sinceC2 > π. Simi-

larly, C2 > π meansthat thereis a
^
u suchthat A(Yq(

^
u )) = Z ⊆ B. The associatedI2Z always

existsby construction:simply defineI2Z(
^
u ) = Y2

α(
^
u ) ∀ ^

u suchthatA(Yq(
^
u )) = Z, andfor all

other
^
u, I2Z(

^
u ) = x for somex ∈ Z. Thereforethe extremain our boundsare always well-

defined.
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